Suppr超能文献

一种用于揭示对话中身体运动二元模式的降维方法。

A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.

作者信息

Gaziv Guy, Noy Lior, Liron Yuvalal, Alon Uri

机构信息

Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

The Theatre Lab, Weizmann Institute of Science, Rehovot, Israel.

出版信息

PLoS One. 2017 Jan 31;12(1):e0170786. doi: 10.1371/journal.pone.0170786. eCollection 2017.

Abstract

Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available.

摘要

面对面交流是人类沟通的核心,也是联合行动的一个引人入胜的例子。除了言语内容,对话中传递信息的主要方式之一是肢体语言。由于涉及大量坐标,自然对话中的身体运动一直难以精确研究。需要新的方法来分析和理解这些数据,以便探究二元组是否展示了耦合运动的基本组成部分。在这里,我们提出了一种使用深度感应相机分析联合行动期间身体运动的方法,并将其用于分析一组科学对话样本。我们的方法包括三个步骤:定义个体参与者的身体运动模式,定义由这些个体模式组合而成的二元组模式,最后将运动基元定义为在给定单人运动统计数据的情况下出现频率明显高于预期的二元组模式。作为概念验证,我们分析了使用两台微软Kinect相机测量的12组科学家的运动。在我们的样本中,我们发现,在许多可能的模式中,只有两种是运动基元:同步平行躯干运动,即参与者同步左右摇摆,以及两人都不动的静止片段。我们发现了二元组在运动模式使用上的个体差异证据。对于随机选择的5个二元组子集,这种个体差异至少持续了6个月。这种简化复杂运动数据并定义运动基元的方法可用于理解其他联合任务和互动。这里开发的分析工具和运动数据集是公开可用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/485b/5283650/d4e013aadc3a/pone.0170786.g001.jpg

相似文献

1
A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.
PLoS One. 2017 Jan 31;12(1):e0170786. doi: 10.1371/journal.pone.0170786. eCollection 2017.
4
Upper torso and pelvis linear velocity during the downswing of elite golfers.
Biomed Eng Online. 2013 Feb 11;12:13. doi: 10.1186/1475-925X-12-13.
5
Mechanical properties of upper torso rotation from the viewpoint of energetics during baseball pitching.
Eur J Sport Sci. 2020 Jun;20(5):606-613. doi: 10.1080/17461391.2019.1646810. Epub 2019 Aug 6.
8
Study of variation in human upper body parameters and motion for use in robotics based simulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6937-40. doi: 10.1109/EMBC.2013.6611153.
9
Voluntary control of pelvic frontal rotations in belly dance experts.
Hum Mov Sci. 2021 Jun;77:102791. doi: 10.1016/j.humov.2021.102791. Epub 2021 Apr 15.
10
Impact of humor-related communication elements in natural dyadic interactions on interpersonal physiological synchrony.
Psychophysiology. 2019 Apr;56(4):e13320. doi: 10.1111/psyp.13320. Epub 2019 Jan 10.

引用本文的文献

2
The Components of Interpersonal Synchrony in the Typical Population and in Autism: A Conceptual Analysis.
Front Psychol. 2022 Jun 6;13:897015. doi: 10.3389/fpsyg.2022.897015. eCollection 2022.
3
Interpersonal synchrony feels good but impedes self-regulation of affect.
Sci Rep. 2019 Oct 11;9(1):14691. doi: 10.1038/s41598-019-50960-0.

本文引用的文献

1
Prosocial Consequences of Interpersonal Synchrony: A Meta-Analysis.
Z Psychol. 2016;224(3):168-189. doi: 10.1027/2151-2604/a000252. Epub 2016 Oct 28.
2
Exit from Synchrony in Joint Improvised Motion.
PLoS One. 2016 Oct 6;11(10):e0160747. doi: 10.1371/journal.pone.0160747. eCollection 2016.
3
Automated Video Analysis of Non-verbal Communication in a Medical Setting.
Front Psychol. 2016 Aug 23;7:1130. doi: 10.3389/fpsyg.2016.01130. eCollection 2016.
4
On the Self-Organizing Origins of Agency.
Trends Cogn Sci. 2016 Jul;20(7):490-499. doi: 10.1016/j.tics.2016.04.004. Epub 2016 May 18.
5
Physiological evidence of interpersonal dynamics in a cooperative production task.
Physiol Behav. 2016 Mar 15;156:24-34. doi: 10.1016/j.physbeh.2016.01.004. Epub 2016 Jan 7.
6
Geometry of the Gene Expression Space of Individual Cells.
PLoS Comput Biol. 2015 Jul 10;11(7):e1004224. doi: 10.1371/journal.pcbi.1004224. eCollection 2015 Jul.
7
Being in the zone: physiological markers of togetherness in joint improvisation.
Front Hum Neurosci. 2015 May 5;9:187. doi: 10.3389/fnhum.2015.00187. eCollection 2015.
9
Movement dynamics reflect a functional role for weak coupling and role structure in dyadic problem solving.
Cogn Process. 2015 Nov;16(4):325-32. doi: 10.1007/s10339-015-0648-2. Epub 2015 Mar 11.
10
Prediction in joint action: what, when, and where.
Top Cogn Sci. 2009 Apr;1(2):353-67. doi: 10.1111/j.1756-8765.2009.01024.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验