Korem Yael, Szekely Pablo, Hart Yuval, Sheftel Hila, Hausser Jean, Mayo Avi, Rothenberg Michael E, Kalisky Tomer, Alon Uri
Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
Department of Medicine, Division of Gastroenterology and Hepatology, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, United States of America.
PLoS Comput Biol. 2015 Jul 10;11(7):e1004224. doi: 10.1371/journal.pcbi.1004224. eCollection 2015 Jul.
There is a revolution in the ability to analyze gene expression of single cells in a tissue. To understand this data we must comprehend how cells are distributed in a high-dimensional gene expression space. One open question is whether cell types form discrete clusters or whether gene expression forms a continuum of states. If such a continuum exists, what is its geometry? Recent theory on evolutionary trade-offs suggests that cells that need to perform multiple tasks are arranged in a polygon or polyhedron (line, triangle, tetrahedron and so on, generally called polytopes) in gene expression space, whose vertices are the expression profiles optimal for each task. Here, we analyze single-cell data from human and mouse tissues profiled using a variety of single-cell technologies. We fit the data to shapes with different numbers of vertices, compute their statistical significance, and infer their tasks. We find cases in which single cells fill out a continuum of expression states within a polyhedron. This occurs in intestinal progenitor cells, which fill out a tetrahedron in gene expression space. The four vertices of this tetrahedron are each enriched with genes for a specific task related to stemness and early differentiation. A polyhedral continuum of states is also found in spleen dendritic cells, known to perform multiple immune tasks: cells fill out a tetrahedron whose vertices correspond to key tasks related to maturation, pathogen sensing and communication with lymphocytes. A mixture of continuum-like distributions and discrete clusters is found in other cell types, including bone marrow and differentiated intestinal crypt cells. This approach can be used to understand the geometry and biological tasks of a wide range of single-cell datasets. The present results suggest that the concept of cell type may be expanded. In addition to discreet clusters in gene-expression space, we suggest a new possibility: a continuum of states within a polyhedron, in which the vertices represent specialists at key tasks.
在分析组织中单个细胞的基因表达能力方面正在发生一场变革。为了理解这些数据,我们必须了解细胞是如何分布在高维基因表达空间中的。一个悬而未决的问题是细胞类型是形成离散的簇,还是基因表达形成连续的状态。如果存在这样的连续体,它的几何形状是什么?最近关于进化权衡的理论表明,需要执行多项任务的细胞在基因表达空间中排列成多边形或多面体(线、三角形、四面体等,一般称为多胞形),其顶点是每个任务的最佳表达谱。在这里,我们分析了使用各种单细胞技术分析的人类和小鼠组织的单细胞数据。我们将数据拟合到具有不同顶点数量的形状上,计算它们的统计显著性,并推断它们的任务。我们发现了单细胞在多面体内填充连续表达状态的情况。这发生在肠道祖细胞中,它们在基因表达空间中填充一个四面体。这个四面体的四个顶点分别富含与干性和早期分化相关的特定任务的基因。在已知执行多种免疫任务的脾脏树突状细胞中也发现了多面体连续状态:细胞填充一个四面体,其顶点对应于与成熟、病原体感知和与淋巴细胞通信相关的关键任务。在其他细胞类型中,包括骨髓和分化的肠隐窝细胞,发现了类似连续分布和离散簇的混合。这种方法可用于理解广泛的单细胞数据集的几何形状和生物学任务。目前的结果表明细胞类型的概念可能会被扩展。除了基因表达空间中的离散簇之外,我们还提出了一种新的可能性:多面体内的连续状态,其中顶点代表关键任务的专家。