Suppr超能文献

对在亚功能化作用下进化的基因复制体的机理马尔可夫模型的分析。

Analysis of a mechanistic Markov model for gene duplicates evolving under subfunctionalization.

作者信息

Stark Tristan L, Liberles David A, Holland Barbara R, O'Reilly Małgorzata M

机构信息

School of Physical Sciences, University of Tasmania, Churchill Ave, Hobart, 7001, Australia.

Center for Computational Genetics and Genomics and Department of Biology, Temple University, Philadelphia, 19122, USA.

出版信息

BMC Evol Biol. 2017 Jan 31;17(1):38. doi: 10.1186/s12862-016-0848-0.

Abstract

BACKGROUND

Gene duplication has been identified as a key process driving functional change in many genomes. Several biological models exist for the evolution of a pair of duplicates after a duplication event, and it is believed that gene duplicates can evolve in different ways, according to one process, or a mix of processes. Subfunctionalization is one such process, under which the two duplicates can be preserved by dividing up the function of the original gene between them. Analysis of genomic data using subfunctionalization and related processes has thus far been relatively coarse-grained, with mathematical treatments usually focusing on the phenomenological features of gene duplicate evolution.

RESULTS

Here, we develop and analyze a mathematical model using the mechanics of subfunctionalization and the assumption of Poisson rates of mutation. By making use of the results from the literature on the Phase-Type distribution, we are able to derive exact analytical results for the model. The main advantage of the mechanistic model is that it leads to testable predictions of the phenomenological behavior (instead of building this behavior into the model a priori), and allows for the estimation of biologically meaningful parameters. We fit the survival function implied by this model to real genome data (Homo sapiens, Mus musculus, Rattus norvegicus and Canis familiaris), and compare the fit against commonly used phenomenological survival functions. We estimate the number of regulatory regions, and rates of mutation (relative to silent site mutation) in the coding and regulatory regions. We find that for the four genomes tested the subfunctionalization model predicts that duplicates most-likely have just a few regulatory regions, and the rate of mutation in the coding region is around 5-10 times greater than the rate in the regulatory regions. This is the first model-based estimate of the number of regulatory regions in duplicates.

CONCLUSIONS

Strong agreement between empirical results and the predictions of our model suggest that subfunctionalization provides a consistent explanation for the evolution of many gene duplicates.

摘要

背景

基因复制已被确定为驱动许多基因组功能变化的关键过程。对于复制事件后一对复制基因的进化存在几种生物学模型,并且据信基因复制可以根据一个过程或多个过程的组合以不同方式进化。亚功能化就是这样一种过程,在此过程中,两个复制基因可以通过在它们之间划分原始基因的功能而得以保留。迄今为止,使用亚功能化及相关过程对基因组数据的分析相对较为粗略,数学处理通常侧重于基因复制进化的现象学特征。

结果

在此,我们利用亚功能化机制和泊松突变率假设开发并分析了一个数学模型。通过利用关于相位型分布的文献结果,我们能够得出该模型的精确解析结果。该机制模型的主要优点在于它能对现象学行为做出可检验的预测(而非将这种行为预先构建到模型中),并允许估计具有生物学意义的参数。我们将此模型所隐含的生存函数拟合到真实的基因组数据(智人、小家鼠、褐家鼠和家犬),并将拟合结果与常用的现象学生存函数进行比较。我们估计了调控区域的数量以及编码区和调控区中的突变率(相对于沉默位点突变)。我们发现,对于所测试的四个基因组,亚功能化模型预测复制基因最有可能仅有少数调控区域,并且编码区的突变率大约是调控区突变率的5至10倍。这是基于模型对复制基因中调控区域数量的首次估计。

结论

实证结果与我们模型的预测之间的高度一致性表明,亚功能化对许多基因复制的进化提供了一致的解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验