Morton James T, Sanders Jon, Quinn Robert A, McDonald Daniel, Gonzalez Antonio, Vázquez-Baeza Yoshiki, Navas-Molina Jose A, Song Se Jin, Metcalf Jessica L, Hyde Embriette R, Lladser Manuel, Dorrestein Pieter C, Knight Rob
Department of Pediatrics, University of California San Diego, La Jolla, California, USA; Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA.
Department of Pediatrics, University of California San Diego, La Jolla, California, USA.
mSystems. 2017 Jan 17;2(1). doi: 10.1128/mSystems.00162-16. eCollection 2017 Jan-Feb.
Advances in sequencing technologies have enabled novel insights into microbial niche differentiation, from analyzing environmental samples to understanding human diseases and informing dietary studies. However, identifying the microbial taxa that differentiate these samples can be challenging. These issues stem from the compositional nature of 16S rRNA gene data (or, more generally, taxon or functional gene data); the changes in the relative abundance of one taxon influence the apparent abundances of the others. Here we acknowledge that inferring properties of individual bacteria is a difficult problem and instead introduce the concept of balances to infer meaningful properties of subcommunities, rather than properties of individual species. We show that balances can yield insights about niche differentiation across multiple microbial environments, including soil environments and lung sputum. These techniques have the potential to reshape how we carry out future ecological analyses aimed at revealing differences in relative taxonomic abundances across different samples. By explicitly accounting for the compositional nature of 16S rRNA gene data through the concept of balances, balance trees yield novel biological insights into niche differentiation. The software to perform this analysis is available under an open-source license and can be obtained at https://github.com/biocore/gneiss. : An author video summary of this article is available.
测序技术的进步使我们对微生物生态位分化有了新的认识,从分析环境样本到理解人类疾病以及为饮食研究提供信息。然而,识别区分这些样本的微生物分类群可能具有挑战性。这些问题源于16S rRNA基因数据(或更一般地说,分类群或功能基因数据)的组成性质;一个分类群相对丰度的变化会影响其他分类群的表观丰度。在这里,我们认识到推断单个细菌的特性是一个难题,因此引入平衡的概念来推断亚群落的有意义特性,而不是单个物种的特性。我们表明,平衡可以揭示多个微生物环境中的生态位分化,包括土壤环境和肺痰液。这些技术有可能重塑我们未来进行生态分析的方式,旨在揭示不同样本中相对分类丰度的差异。通过平衡的概念明确考虑16S rRNA基因数据的组成性质,平衡树为生态位分化提供了新的生物学见解。执行此分析的软件可根据开源许可获得,可在https://github.com/biocore/gneiss获取。本文有作者视频总结。
mSystems. 2017-1-17
mSystems. 2019-2-12
mSystems. 2018-7-17
Brief Bioinform. 2022-9-20
Bioinformatics. 2023-11-1
Methods Ecol Evol. 2013-12-1
Nat Commun. 2025-1-18
NPJ Biodivers. 2024-10-17
Ann Epidemiol. 2016-5
Ann Epidemiol. 2016-5
Microb Ecol Health Dis. 2015-5-29
PLoS Comput Biol. 2015-5-7
PLoS Comput Biol. 2015-3-16
Genome Biol. 2014