Suppr超能文献

优化几何结构的共反点子晶格的可编程性。

Programmability of Co-antidot lattices of optimized geometry.

机构信息

Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany.

Technische Universität Chemnitz, Institute of Physics, 09107 Chemnitz, Germany.

出版信息

Sci Rep. 2017 Feb 1;7:41157. doi: 10.1038/srep41157.

Abstract

Programmability of stable magnetization configurations in a magnetic device is a highly desirable feature for a variety of applications, such as in magneto-transport and spin-wave logic. Periodic systems such as antidot lattices may exhibit programmability; however, to achieve multiple stable magnetization configurations the lattice geometry must be optimized. We consider the magnetization states in Co-antidot lattices of ≈50 nm thickness and ≈150 nm inter-antidot distance. Micromagnetic simulations were applied to investigate the magnetization states around individual antidots during the reversal process. The reversal processes predicted by micromagnetics were confirmed by experimental observations. Magnetization reversal in these antidots occurs via field driven transition between 3 elementary magnetization states - termed G, C and Q. These magnetization states can be described by vectors, and the reversal process proceeds via step-wise linear operations on these vector states. Rules governing the co-existence of the three magnetization states were empirically observed. It is shown that in an n × n antidot lattice, a variety of field switchable combinations of G, C and Q can occur, indicating programmability of the antidot lattices.

摘要

在磁设备中实现稳定磁化组态的可编程性是各种应用的理想特性,例如在磁输运和自旋波逻辑中。周期性系统(如反位错晶格)可能表现出可编程性;然而,为了实现多个稳定的磁化组态,晶格几何形状必须进行优化。我们考虑了 ≈50nm 厚度和约 ≈150nm 反位错间距的 Co 反位错晶格中的磁化状态。微磁模拟被应用于研究反位错周围的磁化状态在反转过程中。通过实验观察证实了微磁模拟预测的反转过程。这些反位错中的磁化反转是通过场驱动在 3 个基本磁化状态之间的转变来实现的,这 3 个基本磁化状态被称为 G、C 和 Q。这些磁化状态可以用向量来描述,并且反转过程是通过对这些向量状态进行逐步的线性操作来进行的。观察到了支配这三个磁化状态共存的规则。结果表明,在 n×n 反位错晶格中,可以发生各种场可切换的 G、C 和 Q 的组合,这表明反位错晶格具有可编程性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5276/5286523/f3a45b6e81e7/srep41157-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验