文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症光热治疗的近红外纳米材料-脂质体混合纳米载体的设计与应用

Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy.

作者信息

Liang Pan, Mao Linshen, Dong Yanli, Zhao Zhenwen, Sun Qin, Mazhar Maryam, Ma Yining, Yang Sijin, Ren Wei

机构信息

National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China.

College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.

出版信息

Pharmaceutics. 2021 Dec 3;13(12):2070. doi: 10.3390/pharmaceutics13122070.


DOI:10.3390/pharmaceutics13122070
PMID:34959351
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8704010/
Abstract

Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.

摘要

脂质体是用于靶向和控释药物递送的有吸引力的载体,在癌症光热疗法中受到越来越多的关注。然而,对于创建近红外纳米材料-脂质体杂化纳米载体(NIRN-Lips)领域的了解相对较少。这种杂化纳米载体结合了纳米材料和脂质体的双重优势,具有更稳定的颗粒、增强的光致发光、更高的肿瘤渗透性、更好的肿瘤靶向药物递送、刺激响应性药物释放,因此表现出更好的抗肿瘤疗效。在此,本综述涵盖了负载各种类型近红外纳米材料的脂质体,包括金基纳米材料、碳基纳米材料和半导体量子点。具体而言,从其特性、合成和药物释放机制方面对NIRN-Lips进行了描述。强调了NIRN-Lips的设计考量。此外,我们简要介绍了近红外纳米材料的光热转换机制以及光热疗法诱导的细胞死亡机制。随后,我们对应用于癌症光热疗法的NIRN-Lips作了简要总结。最后,我们讨论了NIRN-Lips在癌症光热疗法应用中的相关挑战和未来前景概要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/d17b0734537e/pharmaceutics-13-02070-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/d9a330d02095/pharmaceutics-13-02070-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/41affc394e44/pharmaceutics-13-02070-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/67a648cdf232/pharmaceutics-13-02070-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/cdb042ccba4d/pharmaceutics-13-02070-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/64f20b7a155e/pharmaceutics-13-02070-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/d3132c7cba81/pharmaceutics-13-02070-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/d17b0734537e/pharmaceutics-13-02070-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/d9a330d02095/pharmaceutics-13-02070-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/41affc394e44/pharmaceutics-13-02070-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/67a648cdf232/pharmaceutics-13-02070-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/cdb042ccba4d/pharmaceutics-13-02070-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/64f20b7a155e/pharmaceutics-13-02070-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/d3132c7cba81/pharmaceutics-13-02070-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c37a/8704010/d17b0734537e/pharmaceutics-13-02070-g007.jpg

相似文献

[1]
Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy.

Pharmaceutics. 2021-12-3

[2]
Gold-nanobranched-shell based drug vehicles with ultrahigh photothermal efficiency for chemo-photothermal therapy.

Nanomedicine. 2018-10-14

[3]
Multimodal Mesoporous Silica Nanocarriers for Dual Stimuli-Responsive Drug Release and Excellent Photothermal Ablation of Cancer Cells.

Int J Nanomedicine. 2020-10-8

[4]
Gold nanoshell coated thermo-pH dual responsive liposomes for resveratrol delivery and chemo-photothermal synergistic cancer therapy.

J Mater Chem B. 2017-3-21

[5]
Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy.

Nanomedicine. 2017-3-29

[6]
Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy.

Nanoscale. 2021-5-20

[7]
Gold Nanomaterials for Imaging-Guided Near-Infrared Cancer Therapy.

Front Bioeng Biotechnol. 2019-12-5

[8]
Dual Targeted Delivery of Liposomal Hybrid Gold Nano-Assembly for Enhanced Photothermal Therapy against Lung Carcinomas.

ACS Appl Bio Mater. 2023-5-15

[9]
Near infrared radiated stimulus-responsive liposomes based on photothermal conversion as drug carriers for co-delivery of CJM126 and cisplatin.

Mater Sci Eng C Mater Biol Appl. 2017-5-11

[10]
Nanomaterial Applications in Photothermal Therapy for Cancer.

Materials (Basel). 2019-3-7

引用本文的文献

[1]
A review of combined imaging and therapeutic applications based on MNMs.

Front Chem. 2025-5-26

[2]
Preclinical advance in nanoliposome-mediated photothermal therapy in liver cancer.

Lipids Health Dis. 2025-1-31

[3]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[4]
Transforming Medicine with Nanobiotechnology: Nanocarriers and Their Biomedical Applications.

Pharmaceutics. 2024-8-23

[5]
Nano-Proteolysis Targeting Chimeras (Nano-PROTACs) in Cancer Therapy.

Int J Nanomedicine. 2024

[6]
Three-Dimensional Imaging of Bioinspired Lipidic Mesophases Using Multicolored Light-Emitting Carbon Nanodots.

J Phys Chem Lett. 2024-6-20

[7]
Carbon-based Nanomaterials in Photothermal Therapy Guided by Photoacoustic Imaging: State of Knowledge and Recent Advances.

Curr Med Chem. 2025

[8]
Plasmonic porous micro- and nano-materials based on Au/Ag nanostructures developed for photothermal cancer therapy: challenges in clinicalization.

Nanoscale Adv. 2023-11-27

[9]
Nanoparticles for imaging-guided photothermal therapy of colorectal cancer.

Heliyon. 2023-10-20

[10]
Recent Advances of Tumor Microenvironment-Responsive Nanomedicines-Energized Combined Phototherapy of Cancers.

Pharmaceutics. 2023-10-17

本文引用的文献

[1]
Quercetin Encapsulated Biodegradable Plasmonic Nanoparticles for Photothermal Therapy of Hepatocellular Carcinoma Cells.

ACS Appl Bio Mater. 2019-12-16

[2]
A tumor-penetrable drug nanococktail made from human histones for interventional nucleus-targeted chemophotothermal therapy of drug-resistant tumors.

Bioact Mater. 2021-7-31

[3]
Recent advances in selective photothermal therapy of tumor.

J Nanobiotechnology. 2021-10-24

[4]
"Petal-like" size-tunable gold wrapped immunoliposome to enhance tumor deep penetration for multimodal guided two-step strategy.

J Nanobiotechnology. 2021-9-27

[5]
Black Phosphorus, an Emerging Versatile Nanoplatform for Cancer Immunotherapy.

Pharmaceutics. 2021-8-27

[6]
Light: A Magical Tool for Controlled Drug Delivery.

Adv Funct Mater. 2020-12-1

[7]
Rodlike Particles of Polydopamine-CdTe Quantum Dots: An Actuator As a Photothermal Agent and Reactive Oxygen Species-Generating Nanoplatform for Cancer Therapy.

ACS Appl Mater Interfaces. 2021-9-15

[8]
Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy.

Pharmaceutics. 2021-7-30

[9]
Repetitive drug releases from light-activatable micron-sized liposomes.

Colloids Surf A Physicochem Eng Asp. 2021-9-20

[10]
Cyanine Dyes for Photo-Thermal Therapy: A Comparison of Synthetic Liposomes and Natural Erythrocyte-Based Carriers.

Int J Mol Sci. 2021-6-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索