Suppr超能文献

用于选择人工耳蜗电极阵列的耳蜗管长度自动估计

Automatic Cochlear Duct Length Estimation for Selection of Cochlear Implant Electrode Arrays.

作者信息

Rivas Alejandro, Cakir Ahmet, Hunter Jacob B, Labadie Robert F, Zuniga M Geraldine, Wanna George B, Dawant Benoit M, Noble Jack H

机构信息

*Department of Electrical Engineering and Computer Science, Vanderbilt University †Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.

出版信息

Otol Neurotol. 2017 Mar;38(3):339-346. doi: 10.1097/MAO.0000000000001329.

Abstract

HYPOTHESIS

Cochlear duct length (CDL) can be automatically measured for custom selection of cochlear implant (CI) electrode arrays.

BACKGROUND

CI electrode array selection can be influenced by measuring the CDL, which is estimated based on the length of the line that connects the round window and the lateral wall of the cochlea when passing through the modiolus. CDL measurement remains time consuming and inter-observer variability has not been studied.

METHODS

We evaluate an automatic approach to directly measure the two-turn (2T) CDL using existing algorithms for localizing cochlear anatomy in computed tomography (CT). Pre-op CT images of 309 ears were evaluated. Two fellowship-trained neurotologists manually and independently measured CDL. Inter-observer variability between measurements across expert and automatic observers is assessed. Inter-observer differences for choice of electrode type are also investigated.

RESULTS

Manual measurement of CDL by experts tends to underestimate cochlea size and has high inter-observer variability, with mean absolute differences between expert CDL estimations of 1.15 mm. Our results show that this can lead to a large number of cochleae for which a different electrode array type would be selected by different observers, depending on the specific threshold value of CDL used to decide between array type.

CONCLUSION

Choosing the best CI electrode array is an important task for optimizing hearing outcomes. Manual cochleae length measurements are user-dependent, and errors impact upon the CI electrode array choice for certain patients. Measuring cochlea length automatically is less time consuming and generates more repeatable results. Our automatic approach could make use of CDL for patient-customized treatment more clinically adoptable.

摘要

假设

可以自动测量蜗管长度(CDL),以便为人工耳蜗(CI)电极阵列进行定制选择。

背景

CI电极阵列的选择可受CDL测量的影响,CDL是根据穿过蜗轴时连接圆窗和耳蜗外侧壁的线的长度估算得出的。CDL测量仍然耗时,且尚未研究观察者间的变异性。

方法

我们评估了一种使用现有计算机断层扫描(CT)中蜗管解剖结构定位算法直接测量两圈(2T)CDL的自动方法。对309只耳的术前CT图像进行了评估。两名经过专科培训的神经耳科医生手动并独立测量CDL。评估了专家观察者与自动测量观察者之间测量结果的观察者间变异性。还研究了电极类型选择的观察者间差异。

结果

专家手动测量CDL往往会低估耳蜗大小,且观察者间变异性较高,专家CDL估计值之间的平均绝对差异为1.15毫米。我们的结果表明,这可能导致大量耳蜗,不同观察者会根据用于决定阵列类型的CDL特定阈值选择不同的电极阵列类型。

结论

选择最佳的CI电极阵列是优化听力结果的一项重要任务。手动测量耳蜗长度依赖于使用者,并且误差会影响某些患者的CI电极阵列选择。自动测量耳蜗长度耗时较少,且产生的结果更具可重复性。我们的自动方法可以使基于CDL的患者定制治疗在临床上更具可采用性。

相似文献

1
Automatic Cochlear Duct Length Estimation for Selection of Cochlear Implant Electrode Arrays.
Otol Neurotol. 2017 Mar;38(3):339-346. doi: 10.1097/MAO.0000000000001329.
2
An automated A-value measurement tool for accurate cochlear duct length estimation.
J Otolaryngol Head Neck Surg. 2018 Jan 22;47(1):5. doi: 10.1186/s40463-018-0253-3.
3
Measuring Cochlear Duct Length - a historical analysis of methods and results.
J Otolaryngol Head Neck Surg. 2017 Mar 7;46(1):19. doi: 10.1186/s40463-017-0194-2.
4
CT imaging-based approaches to cochlear duct length estimation-a human temporal bone study.
Eur Radiol. 2022 Feb;32(2):1014-1023. doi: 10.1007/s00330-021-08189-x. Epub 2021 Aug 31.
5
Determining optimal cochlear implant electrode array with OTOPLAN.
Acta Otolaryngol. 2023 Sep;143(9):748-752. doi: 10.1080/00016489.2023.2256790. Epub 2023 Nov 8.
6
[Measuring the cochlea using a tablet-based software package: influence of imaging modality and rater background].
HNO. 2022 Oct;70(10):769-777. doi: 10.1007/s00106-022-01208-3. Epub 2022 Aug 15.
8
[Cochlear Implantation: Evaluation of Cochlear Duct Length (CDL)].
Laryngorhinootologie. 2022 May;101(5):428-441. doi: 10.1055/a-1742-5254. Epub 2022 May 2.
9
Direct measurement of cochlear parameters for automatic calculation of the cochlear duct length.
Ann Saudi Med. 2020 May-Jun;40(3):212-218. doi: 10.5144/0256-4947.2020.218. Epub 2020 Jun 4.
10
Variation of the cochlear anatomy and cochlea duct length: analysis with a new tablet-based software.
Eur Arch Otorhinolaryngol. 2022 Apr;279(4):1851-1861. doi: 10.1007/s00405-021-06889-0. Epub 2021 May 29.

引用本文的文献

1
Clinical Validation of Manual Measurement of Cochlea Length With Post-Operative Electrode Insertion Depth: A Pilot Study.
Laryngoscope Investig Otolaryngol. 2025 Aug 27;10(4):e70237. doi: 10.1002/lio2.70237. eCollection 2025 Aug.
2
Accuracy assessment of a cochlear implant imaging tool using clinical computed tomography images.
Sci Rep. 2025 Aug 27;15(1):31649. doi: 10.1038/s41598-025-16600-6.
3
Three-dimensional examination of cochlear dimensions in children up to 18 years.
Childs Nerv Syst. 2025 Jun 2;41(1):199. doi: 10.1007/s00381-025-06843-z.
4
Frequency-to-Place Mismatch and Cochlear Implant Outcomes by Electrode Type.
JAMA Otolaryngol Head Neck Surg. 2025 Feb 1;151(2):135-142. doi: 10.1001/jamaoto.2024.4158.
5
Brazilian Society of Otology task force - cochlear implant ‒ recommendations based on strength of evidence.
Braz J Otorhinolaryngol. 2025 Jan-Feb;91(1):101512. doi: 10.1016/j.bjorl.2024.101512. Epub 2024 Sep 16.
6
Automated segmentation of clinical CT scans of the cochlea and analysis of the cochlea's vertical profile.
Heliyon. 2024 Aug 6;10(16):e35737. doi: 10.1016/j.heliyon.2024.e35737. eCollection 2024 Aug 30.
7
Cochlear Implantation: Small Cochlear Diameter May Indicate Degree of Abnormality.
J Int Adv Otol. 2024 Mar 27;20(2):108-112. doi: 10.5152/iao.2024.231191.
8
Otological Planning Software-OTOPLAN: A Narrative Literature Review.
Audiol Res. 2023 Oct 18;13(5):791-801. doi: 10.3390/audiolres13050070.
9
Validation of Automatic Cochlear Measurements Using OTOPLAN Software.
J Pers Med. 2023 May 8;13(5):805. doi: 10.3390/jpm13050805.

本文引用的文献

1
2
Method to estimate the complete and two-turn cochlear duct length.
Otol Neurotol. 2015 Jun;36(5):904-7. doi: 10.1097/MAO.0000000000000620.
3
Automatic segmentation of intracochlear anatomy in conventional CT.
IEEE Trans Biomed Eng. 2011 Sep;58(9):2625-32. doi: 10.1109/TBME.2011.2160262. Epub 2011 Jun 23.
5
7
Variational anatomy of the human cochlea: implications for cochlear implantation.
Otol Neurotol. 2009 Jan;30(1):14-22. doi: 10.1097/MAO.0b013e31818a08e8.
8
Sex differences in the length of the organ of Corti in humans.
J Acoust Soc Am. 2007 Apr;121(4):EL151-5. doi: 10.1121/1.2710746.
9
The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes.
Audiol Neurootol. 2006;11 Suppl 1:27-33. doi: 10.1159/000095611. Epub 2006 Oct 6.
10
Predicting basal cochlear length for electric-acoustic stimulation.
Arch Otolaryngol Head Neck Surg. 2005 Jun;131(6):488-92. doi: 10.1001/archotol.131.6.488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验