Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Laryngoscope. 2010 Nov;120(11):2277-83. doi: 10.1002/lary.21104.
OBJECTIVES/HYPOTHESIS: We have previously described a novel, automated, nonrigid, model-based method for determining the intrascalar position of cochlear implant (CI) electrode arrays within human temporal bones using clinically available, flat-panel volume computed tomography (fpVCT). We sought to validate this method by correlating results with anatomic microdissection of CI arrays in cadaveric bones.
Basic science.
Seven adult cadaveric temporal bones were imaged using fpVCT before and after electrode insertion. Using a statistical model of intracochlear anatomy, an active shape model optimization approach was employed to identify the scalae tympani and vestibuli on the preintervention fpVCT. The array position was estimated by identifying its midline on the postintervention scan and superimposing it onto the preintervention images using rigid registration. Specimens were then microdissected to demonstrate the actual array position.
Using microdissection as the standard for ascertaining electrode position, automatic identification of the basilar membrane coupled with postintervention fpVCT for electrode position identification accurately depicted the array location in all seven bones. In four specimens, the array remained within the scala tympani; in three, the basilar membrane was breached.
We have anatomically validated this automated method for predicting the intrascalar location of CI arrays using CT. Using this algorithm and pre- and postintervention CT, rapid feedback regarding implant location and expected audiologic outcomes could be obtained in clinical settings.
目的/假设:我们之前描述了一种新颖的、自动化的、非刚性的、基于模型的方法,用于使用临床可用的平板容积 CT(fpVCT)确定人类颞骨中耳蜗植入物(CI)电极阵列的内标位置。我们试图通过将结果与尸体骨骼中 CI 阵列的解剖学微解剖相关联来验证这种方法。
基础科学。
在插入电极之前和之后,使用 fpVCT 对七个成人尸体颞骨进行成像。使用内耳蜗解剖的统计模型,采用主动形状模型优化方法来识别干预前 fpVCT 中的鼓阶和前庭。通过在干预后扫描中识别其中线并使用刚性配准将其叠加到干预前图像上来估计阵列位置。然后对标本进行微解剖以显示实际的阵列位置。
使用微解剖作为确定电极位置的标准,自动识别基底膜并结合干预后 fpVCT 进行电极位置识别,在所有七个骨骼中准确描绘了阵列位置。在四个标本中,阵列仍保留在鼓阶内;在三个标本中,基底膜破裂。
我们使用 CT 对预测 CI 阵列内标位置的这种自动方法进行了解剖验证。在临床环境中,使用此算法和干预前后的 CT,可以快速获得有关植入物位置和预期听力结果的反馈。