State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Street, Changchun 130012, P.R. China.
Nanoscale. 2017 Apr 13;9(15):4847-4861. doi: 10.1039/c6nr08693d.
Surface-enhanced Raman scattering (SERS)-active nanomaterials have extended from noble metals and transition metals to semiconductor materials, since the first discovery of SERS in the mid-1970s. In comparison with metal substrates and transition metals, semiconductor materials have additional optical and electrical properties besides SERS enhancement ability, which enable them to display remarkable charge-transfer enhancement and catalytic ability. Moreover, their superior biocompatibility allows these nanomaterials to have great potential applications in bioscience. Herein we highlight the fast growing research field focusing on SERS-active semiconductor nanomaterials and semiconductor-other material heterostructures developed in our group as well as in other related research studies. The material size, morphology and assembly-dependent SERS enhancement have been discussed in detail. Furthermore, a variety of promising applications of semiconductor-enhanced Raman scattering in photoelectric characterization, redox biochemistry, sensing, and the catalytic degradation of organic pollutants are introduced.
表面增强拉曼散射(SERS)活性纳米材料已从贵金属和过渡金属扩展到半导体材料,这是自 20 世纪 70 年代中期首次发现 SERS 以来的情况。与金属衬底和过渡金属相比,半导体材料除了具有 SERS 增强能力之外,还具有其他光学和电学性质,这使它们能够显示出显著的电荷转移增强和催化能力。此外,它们优异的生物相容性使这些纳米材料在生物科学中有很大的潜在应用。在此,我们重点介绍了我们小组以及其他相关研究小组在 SERS 活性半导体纳米材料和半导体-其他材料异质结构方面快速发展的研究领域。详细讨论了材料尺寸、形态和组装依赖性的 SERS 增强。此外,还介绍了半导体增强拉曼散射在光电特性、氧化还原生物化学、传感和有机污染物催化降解等方面的多种有前途的应用。