Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083, P. R. China.
Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
Nanoscale. 2017 Apr 6;9(14):4683-4690. doi: 10.1039/c6nr09235g.
Understanding the photoexcited carrier-relaxation actions in ultrasmall black phosphorus quantum dots (BPQDs) will play a crucial role in the fields of electronics and optoelectronics. Herein, we report the ultraviolet (UV) saturable absorption and ultrafast photoexcited carrier-relaxation dynamics of BPQDs. The ultrasmall BPQDs are synthesized using a facile liquid-exfoliation method and possess a diameter of 3.8 ± 0.6 nm and a thickness of 1.5 ± 0.4 nm. Femtosecond open-aperture (OA) Z-scan measurements showed typical saturable absorption properties in the UV band. A negative nonlinear optical (NLO) absorption coefficient of -(1.4 ± 0.3) × 10 cm GW and a saturable intensity of 6.6 ± 1.3 GW cm were determined. Using a degenerate pump-probe technique, an ultrafast photoexcited carrier-recombination time was observed in the range of 216-305 fs, which was 3 orders of magnitude faster than that of BP nanosheets. Such an ultrafast relaxation component may be attributable to the edge- and step-mediated recombination and was confirmed by our density functional theory (DFT) calculations. This work provides fundamental insight into the underlying mechanism of the photoexcited carrier relaxation dynamic action in BPQDs which can enable UV photonic devices.
理解在超小黑磷量子点 (BPQDs) 中光激发载流子弛豫的作用,将在电子学和光电子学领域发挥关键作用。在此,我们报告了 BPQDs 的紫外 (UV) 饱和吸收和超快光激发载流子弛豫动力学。通过简便的液相剥离法合成了超小 BPQDs,其直径为 3.8 ± 0.6nm,厚度为 1.5 ± 0.4nm。飞秒开孔径 (OA) Z 扫描测量显示出在 UV 波段具有典型的饱和吸收特性。确定了负的非线性光学 (NLO) 吸收系数为-(1.4 ± 0.3)×10cm GW 和饱和强度为 6.6 ± 1.3 GW cm。使用简并泵浦探测技术,在 216-305fs 的范围内观察到超快光激发载流子复合时间,比 BP 纳米片快 3 个数量级。这种超快弛豫分量可能归因于边缘和台阶介导的复合,这通过我们的密度泛函理论 (DFT) 计算得到了证实。这项工作为 BPQDs 中光激发载流子弛豫动态作用的基础机制提供了深入的了解,这将使 UV 光子器件成为可能。