Suppr超能文献

一种用于光谱数据变量选择的具有回归系数方法的高效弹性网络

An Efficient Elastic Net with Regression Coefficients Method for Variable Selection of Spectrum Data.

作者信息

Liu Wenya, Li Qi

机构信息

School of Control Science and Engineering, Dalian University of Technology, Dalian, China.

出版信息

PLoS One. 2017 Feb 2;12(2):e0171122. doi: 10.1371/journal.pone.0171122. eCollection 2017.

Abstract

Using the spectrum data for quality prediction always suffers from noise and colinearity, so variable selection method plays an important role to deal with spectrum data. An efficient elastic net with regression coefficients method (Enet-BETA) is proposed to select the significant variables of the spectrum data in this paper. The proposed Enet-BETA method can not only select important variables to make the quality easy to interpret, but also can improve the stability and feasibility of the built model. Enet-BETA method is not prone to overfitting because of the reduction of redundant variables realized by elastic net method. Hypothesis testing is used to further simplify the model and provide a better insight into the nature of process. The experimental results prove that the proposed Enet-BETA method outperforms the other methods in terms of prediction performance and model interpretation.

摘要

利用光谱数据进行质量预测总是受到噪声和共线性的困扰,因此变量选择方法在处理光谱数据中起着重要作用。本文提出了一种有效的带回归系数的弹性网络方法(Enet-BETA)来选择光谱数据的显著变量。所提出的Enet-BETA方法不仅可以选择重要变量以使质量易于解释,而且还可以提高所构建模型的稳定性和可行性。由于弹性网络方法实现了冗余变量的减少,Enet-BETA方法不易过拟合。使用假设检验进一步简化模型,并更好地洞察过程的本质。实验结果证明,所提出的Enet-BETA方法在预测性能和模型解释方面优于其他方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09b1/5289531/9478de6e44a6/pone.0171122.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验