Liu Wenya, Li Qi
School of Control Science and Engineering, Dalian University of Technology, Dalian, China.
PLoS One. 2017 Feb 2;12(2):e0171122. doi: 10.1371/journal.pone.0171122. eCollection 2017.
Using the spectrum data for quality prediction always suffers from noise and colinearity, so variable selection method plays an important role to deal with spectrum data. An efficient elastic net with regression coefficients method (Enet-BETA) is proposed to select the significant variables of the spectrum data in this paper. The proposed Enet-BETA method can not only select important variables to make the quality easy to interpret, but also can improve the stability and feasibility of the built model. Enet-BETA method is not prone to overfitting because of the reduction of redundant variables realized by elastic net method. Hypothesis testing is used to further simplify the model and provide a better insight into the nature of process. The experimental results prove that the proposed Enet-BETA method outperforms the other methods in terms of prediction performance and model interpretation.
利用光谱数据进行质量预测总是受到噪声和共线性的困扰,因此变量选择方法在处理光谱数据中起着重要作用。本文提出了一种有效的带回归系数的弹性网络方法(Enet-BETA)来选择光谱数据的显著变量。所提出的Enet-BETA方法不仅可以选择重要变量以使质量易于解释,而且还可以提高所构建模型的稳定性和可行性。由于弹性网络方法实现了冗余变量的减少,Enet-BETA方法不易过拟合。使用假设检验进一步简化模型,并更好地洞察过程的本质。实验结果证明,所提出的Enet-BETA方法在预测性能和模型解释方面优于其他方法。