Suppr超能文献

跨队列可复制的静息状态功能连接可预测精神分裂症的症状和认知。

Cross-cohort replicable resting-state functional connectivity in predicting symptoms and cognition of schizophrenia.

机构信息

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China.

出版信息

Hum Brain Mapp. 2024 May;45(7):e26694. doi: 10.1002/hbm.26694.

Abstract

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.

摘要

精神分裂症(SZ)是一种使人衰弱的精神疾病,其特征是在青少年或成年早期出现精神病、阳性和阴性症状以及认知障碍。尽管有大量研究利用功能磁共振成像(fMRI)的功能连接(FC)来预测 SZ 的症状和认知障碍,但研究结果存在很大的异质性。我们旨在确定能够预测 SZ 的阳性和阴性症状以及认知障碍的一致且可复制的连接模式。通过采用个体化预测模型来识别可预测的功能连接(FC),并在三个独立队列(BSNIP,SZ=174;COBRE,SZ=100;FBIRN,SZ=161)中进一步评估其可重复性。在三个队列中,我们观察到额颞顶叶-扣带回-丘脑网络的改变 FC 在预测阳性症状时具有可重复性,而感觉运动网络则可预测阴性症状。颞叶-海马旁网络被一致认为与认知功能下降有关。这些可重复的 23 个 FC 在三个队列中有效地将 SZ 与健康对照组(HC)区分开来(82.7%、90.2%和 86.1%)。此外,使用这些可重复 FC 构建的模型在预测三个队列中 SZ 的症状/认知方面,其准确率与使用全脑特征构建的模型相当(r=0.17-0.33,p<0.05)。总的来说,我们的研究结果为 SZ 症状/认知的神经基础提供了新的见解,并为进一步的研究和可能的临床干预提供了潜在的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef04/11083889/c9837fb8855b/HBM-45-e26694-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验