Martín-Hernández Raquel, Higes Mariano, Sagastume Soledad, Juarranz Ángeles, Dias-Almeida Joyce, Budge Giles E, Meana Aránzazu, Boonham Neil
Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain.
Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, Albacete, Spain.
PLoS One. 2017 Feb 2;12(2):e0170183. doi: 10.1371/journal.pone.0170183. eCollection 2017.
Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host's cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite's survival within the cell.
细胞内寄生虫能够改变宿主细胞的细胞机制,为自身生存创造一个安全的环境。在这方面,微孢子虫是专性细胞内真菌寄生虫,其基因组极度简化,因此,它们在能量和资源方面强烈依赖宿主。迄今为止,关于微孢子虫对宿主细胞的操控研究较少,其中大多数研究集中在形态学方面。微孢子虫蜜蜂微孢子虫和东方蜜蜂微孢子虫是全球范围内蜜蜂的寄生虫,感染蜜蜂的心室上皮细胞。在这项研究中,通过定量基因表达和组织学研究,来探究这两种寄生虫如何在分子水平上操控宿主细胞。这两种微孢子虫都会引发感染诱导的、与细胞凋亡和细胞周期相关基因的调控。感染后观察到buffy(编码一种促生存蛋白)和BIRC5(属于凋亡抑制蛋白家族)上调,这揭示了这些病原体用于抑制宿主细胞凋亡的途径。奇怪的是,每种微孢子虫感染后,与细胞周期相关的不同途径都发生了改变。在蜜蜂微孢子虫感染的情况下,细胞周期蛋白B1、dacapo和E2F2上调,而东方蜜蜂微孢子虫感染后仅细胞周期蛋白E上调,两种情况均促进G1/S期转换。这是第一份描述与寄生虫 - 宿主相互作用相关分子途径的报告,这些途径可能旨在确保寄生虫在细胞内的生存。