Johnson Kari A, Mateo Yolanda, Lovinger David M
Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane TS-13, Rockville, MD 20852, USA.
Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane TS-13, Rockville, MD 20852, USA.
Neuropharmacology. 2017 May 1;117:114-123. doi: 10.1016/j.neuropharm.2017.01.038. Epub 2017 Jan 31.
The striatum plays critical roles in action control and cognition, and activity of striatal neurons is driven by glutamatergic input. Inhibition of glutamatergic inputs to projection neurons and interneurons of the striatum by presynaptic G protein-coupled receptors (GPCRs) stands to modulate striatal output and striatum-dependent behaviors. Despite knowledge that a substantial number of glutamatergic inputs to striatal neurons originate in the thalamus, most electrophysiological studies assessing GPCR modulation do not differentiate between effects on corticostriatal and thalamostriatal transmission, and synaptic inhibition is frequently assumed to be mediated by activation of GPCRs on corticostriatal terminals. We used optogenetic techniques and recently-discovered pharmacological tools to dissect the effects of a prominent presynaptic GPCR, metabotropic glutamate receptor 2 (mGlu), on corticostriatal vs. thalamostriatal transmission. We found that an agonist of mGlu and mGlu induces long-term depression (LTD) at synapses onto MSNs from both the cortex and the thalamus. Thalamostriatal LTD is selectively blocked by an mGlu-selective negative allosteric modulator and reversed by application of an antagonist following LTD induction. Activation of mGlu also induces LTD of thalamostriatal transmission in striatal cholinergic interneurons (CINs), and pharmacological activation of mGlu or selective activation of mGlu inhibits CIN-mediated dopamine release evoked by selective stimulation of thalamostriatal inputs. Thus, mGlu activation exerts effects on striatal physiology that extend beyond modulation of corticostriatal synapses, and has the potential to influence cognition and striatum-related disorders via inhibition of thalamus-derived glutamate and dopamine release.
纹状体在动作控制和认知中发挥着关键作用,纹状体神经元的活动由谷氨酸能输入驱动。突触前G蛋白偶联受体(GPCRs)对纹状体投射神经元和中间神经元的谷氨酸能输入的抑制作用,有望调节纹状体输出和依赖纹状体的行为。尽管已知纹状体神经元的大量谷氨酸能输入起源于丘脑,但大多数评估GPCR调节作用的电生理研究并未区分对皮质纹状体和丘脑纹状体传递的影响,并且通常认为突触抑制是由皮质纹状体终末上的GPCR激活介导的。我们使用光遗传学技术和最近发现的药理学工具,来剖析一种突出的突触前GPCR——代谢型谷氨酸受体2(mGlu)对皮质纹状体与丘脑纹状体传递的影响。我们发现,mGlu的激动剂和mGlu在来自皮质和丘脑的中型多棘神经元(MSNs)突触上诱导长时程抑制(LTD)。丘脑纹状体LTD被mGlu选择性负变构调节剂选择性阻断,并在LTD诱导后通过应用拮抗剂而逆转。mGlu的激活还在纹状体胆碱能中间神经元(CINs)中诱导丘脑纹状体传递的LTD,并且mGlu的药理学激活或mGlu的选择性激活抑制由丘脑纹状体输入的选择性刺激诱发的CIN介导的多巴胺释放。因此,mGlu激活对纹状体生理学产生的影响超出了对皮质纹状体突触的调节,并且有可能通过抑制丘脑来源的谷氨酸和多巴胺释放来影响认知和与纹状体相关的疾病。