Kamihigashi Takashi
RIEB, Kobe University, Rokkodai, Nada, Kobe 657-8501 Japan.
J Inequal Appl. 2017;2017(1):24. doi: 10.1186/s13660-016-1288-5. Epub 2017 Jan 18.
Given a sequence [Formula: see text] of measurable functions on a -finite measure space such that the integral of each [Formula: see text] as well as that of [Formula: see text] exists in [Formula: see text], we provide a sufficient condition for the following inequality to hold: [Formula: see text] Our condition is considerably weaker than sufficient conditions known in the literature such as uniform integrability (in the case of a finite measure) and equi-integrability. As an application, we obtain a new result on the existence of an optimal path for deterministic infinite-horizon optimization problems in discrete time.
给定一个在 - 有限测度空间上的可测函数序列[公式:见原文],使得每个[公式:见原文]以及[公式:见原文]的积分在[公式:见原文]中都存在,我们给出以下不等式成立的一个充分条件:[公式:见原文]我们的条件比文献中已知的充分条件(如一致可积性(在有限测度的情况下)和等度可积性)要弱得多。作为一个应用,我们得到了关于离散时间确定性无限期优化问题最优路径存在性的一个新结果。