Suppr超能文献

长宽比和冲程模式对仿蝙蝠膜翅力产生的影响。

The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing.

作者信息

Schunk Cosima, Swartz Sharon M, Breuer Kenneth S

机构信息

School of Engineering , Brown University , Providence, RI 02912 , USA.

School of Engineering, Brown University, Providence, RI 02912, USA; Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.

出版信息

Interface Focus. 2017 Feb 6;7(1):20160083. doi: 10.1098/rsfs.2016.0083.

Abstract

Aspect ratio (AR) is one parameter used to predict the flight performance of a bat species based on wing shape. Bats with high AR wings are thought to have superior lift-to-drag ratios and are therefore predicted to be able to fly faster or to sustain longer flights. By contrast, bats with lower AR wings are usually thought to exhibit higher manoeuvrability. However, the half-span ARs of most bat wings fall into a narrow range of about 2.5-4.5. Furthermore, these predictions do not take into account the wide variation in flapping motion observed in bats. To examine the influence of different stroke patterns, we measured lift and drag of highly compliant membrane wings with different bat-relevant ARs. A two degrees of freedom shoulder joint allowed for independent control of flapping amplitude and wing sweep. We tested five models with the same variations of stroke patterns, flapping frequencies and wind speed velocities. Our results suggest that within the relatively small AR range of bat wings, AR has no clear effect on force generation. Instead, the generation of lift by our simple model mostly depends on wingbeat frequency, flapping amplitude and freestream velocity; drag is mostly affected by the flapping amplitude.

摘要

展弦比(AR)是根据翅膀形状预测蝙蝠飞行性能的一个参数。展弦比高的蝙蝠翅膀被认为具有更好的升阻比,因此预计能够飞得更快或维持更长时间的飞行。相比之下,展弦比低的蝙蝠通常被认为具有更高的机动性。然而,大多数蝙蝠翅膀的半展弦比落在大约2.5至4.5的狭窄范围内。此外,这些预测没有考虑到在蝙蝠中观察到的扑翼运动的广泛变化。为了研究不同冲程模式的影响,我们测量了具有不同与蝙蝠相关展弦比的高顺应性膜翅的升力和阻力。一个两自由度的肩关节允许独立控制扑翼幅度和机翼后掠角。我们测试了五个具有相同冲程模式、扑翼频率和风速变化的模型。我们的结果表明,在蝙蝠翅膀相对较小的展弦比范围内,展弦比对力的产生没有明显影响。相反,我们的简单模型产生的升力主要取决于拍频、扑翼幅度和自由流速度;阻力主要受扑翼幅度的影响。

相似文献

1
The influence of aspect ratio and stroke pattern on force generation of a bat-inspired membrane wing.
Interface Focus. 2017 Feb 6;7(1):20160083. doi: 10.1098/rsfs.2016.0083.
2
Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds.
J Exp Biol. 1999 Jul;202 (Pt 13):1725-39. doi: 10.1242/jeb.202.13.1725.
3
The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.
Bioinspir Biomim. 2015 Oct 9;10(5):056020. doi: 10.1088/1748-3190/10/5/056020.
4
Rotational accelerations stabilize leading edge vortices on revolving fly wings.
J Exp Biol. 2009 Aug;212(Pt 16):2705-19. doi: 10.1242/jeb.022269.
5
Dwarf Kingfisher-Inspired Bionic Flapping Wing and Its Aerodynamic Performance at Lowest Flight Speed.
Biomimetics (Basel). 2022 Aug 29;7(3):123. doi: 10.3390/biomimetics7030123.
6
Folding in and out: passive morphing in flapping wings.
Bioinspir Biomim. 2015 Mar 25;10(2):025001. doi: 10.1088/1748-3190/10/2/025001.
7
Aspect Ratio Effects on the Aerodynamic Performance of a Biomimetic Hummingbird Wing in Flapping.
Biomimetics (Basel). 2023 May 23;8(2):216. doi: 10.3390/biomimetics8020216.
8
Rapid flapping and fibre-reinforced membrane wings are key to high-performance bat flight.
J R Soc Interface. 2023 Nov;20(208):20230466. doi: 10.1098/rsif.2023.0466. Epub 2023 Nov 15.
9
Unsteady aerodynamic forces of a flapping wing.
J Exp Biol. 2004 Mar;207(Pt 7):1137-50. doi: 10.1242/jeb.00868.
10
Effect of incorporating wing veins on soft wings for flapping micro air vehicles.
Front Robot AI. 2023 Aug 7;10:1243238. doi: 10.3389/frobt.2023.1243238. eCollection 2023.

引用本文的文献

2
Turning-ascending flight of a bat.
R Soc Open Sci. 2022 Jun 8;9(6):211788. doi: 10.1098/rsos.211788. eCollection 2022 Jun.

本文引用的文献

1
Airplane tracking documents the fastest flight speeds recorded for bats.
R Soc Open Sci. 2016 Nov 9;3(11):160398. doi: 10.1098/rsos.160398. eCollection 2016 Nov.
2
Wake structure and kinematics in two insectivorous bats.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0385.
3
Flapping wing aerodynamics: from insects to vertebrates.
J Exp Biol. 2016 Apr;219(Pt 7):920-32. doi: 10.1242/jeb.042317.
4
Kinematics and aerodynamics of avian upstrokes during slow flight.
J Exp Biol. 2015 Aug;218(Pt 16):2518-27. doi: 10.1242/jeb.116228. Epub 2015 Jun 18.
5
Biaxial mechanical characterization of bat wing skin.
Bioinspir Biomim. 2015 Apr 21;10(3):036004. doi: 10.1088/1748-3190/10/3/036004.
6
A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes.
J R Soc Interface. 2015 May 6;12(106). doi: 10.1098/rsif.2014.1286.
7
Hindlimb motion during steady flight of the lesser dog-faced fruit bat, Cynopterus brachyotis.
PLoS One. 2014 May 23;9(5):e98093. doi: 10.1371/journal.pone.0098093. eCollection 2014.
8
Membrane muscle function in the compliant wings of bats.
Bioinspir Biomim. 2014 Jun;9(2):025007. doi: 10.1088/1748-3182/9/2/025007. Epub 2014 May 22.
9
How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.
Bioinspir Biomim. 2014 Jun;9(2):025008. doi: 10.1088/1748-3182/9/2/025008. Epub 2014 May 22.
10
Design and characterization of a multi-articulated robotic bat wing.
Bioinspir Biomim. 2013 Mar;8(1):016009. doi: 10.1088/1748-3182/8/1/016009. Epub 2013 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验