Norisada Kazushi, Javkhlantugs Namsrai, Mishima Daisuke, Kawamura Izuru, Saitô Hazime, Ueda Kazuyoshi, Naito Akira
Graduate School of Engineering, Yokohama National University , 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
School of Engineering and Applied Sciences, National University of Mongolia , Ulaanbaatar 14201, Mongolia.
J Phys Chem B. 2017 Mar 2;121(8):1802-1811. doi: 10.1021/acs.jpcb.6b11207. Epub 2017 Feb 15.
Melittin is a venom peptide that disrupts lipid bilayers at temperatures below the liquid-crystalline to gel phase transition temperature (T). Notably, the ability of melittin to disrupt acidic dimyristoylphosphatidylglycerol (DMPG) bilayers was weaker than its ability to disrupt neutral dimyristoylphosphatidylcholine bilayers. The structure and orientation of melittin bound to DMPG bilayers were revealed by analyzing the C chemical shift anisotropy of [1-C]-labeled melittin obtained from solid-state C NMR spectra. C chemical shift anisotropy showed oscillatory shifts with the index number of residues. Analysis of the chemical shift oscillation properties indicated that melittin bound to a DMPG membrane adopts a bent α-helical structure with tilt angles for the N- and C-terminal helices of -32 and +30°, respectively. The transmembrane melittin in DMPG bilayers indicates that the peptide protrudes toward the C-terminal direction from the core region of the lipid bilayer to show a pseudotransmembrane bent α-helix. Molecular dynamics simulation was performed to characterize the structure and interaction of melittin with lipid molecules in DMPG bilayers. The simulation results indicate that basic amino acid residues in melittin interact strongly with lipid head groups to generate a pseudo-transmembrane alignment. The N-terminus is located within the lipid core region and disturbs the lower surface of the lipid bilayer.
蜂毒肽是一种毒液肽,在低于液晶态到凝胶相转变温度(T)的温度下会破坏脂质双层。值得注意的是,蜂毒肽破坏酸性二肉豆蔻酰磷脂酰甘油(DMPG)双层的能力比其破坏中性二肉豆蔻酰磷脂酰胆碱双层的能力弱。通过分析从固态碳核磁共振谱获得的[1-¹³C]标记蜂毒肽的碳化学位移各向异性,揭示了与DMPG双层结合的蜂毒肽的结构和取向。碳化学位移各向异性随残基序号呈现振荡位移。对化学位移振荡特性的分析表明,与DMPG膜结合的蜂毒肽采用弯曲的α-螺旋结构,N端和C端螺旋的倾斜角分别为-32°和+30°。DMPG双层中的跨膜蜂毒肽表明,该肽从脂质双层的核心区域向C端方向突出,呈现出假跨膜弯曲α-螺旋。进行了分子动力学模拟,以表征蜂毒肽与DMPG双层中脂质分子的结构和相互作用。模拟结果表明,蜂毒肽中的碱性氨基酸残基与脂质头部基团强烈相互作用,形成假跨膜排列。N端位于脂质核心区域内,扰乱脂质双层的下表面。