Department of Chemistry , University at Albany, State University of New York , Albany , New York 12222 , United States.
Biochemistry. 2018 May 15;57(19):2775-2785. doi: 10.1021/acs.biochem.8b00156. Epub 2018 Apr 30.
In recent years, there has been a resurgence of interest in melittin and its variants as their therapeutic potential has become increasingly evident. Melittin is a 26-residue peptide and a toxic component of honey bee venom. The versatility of melittin in interacting with various biological substrates, such as membranes, glycosaminoglycans, and a variety of proteins, has inspired a slew of studies that aim to improve our understanding of the structural basis of such interactions. However, these studies have largely focused on melittin solutions at high concentrations (>1 mM), even though melittin is generally effective at lower (micromolar) concentrations. Here we present high-resolution nuclear magnetic resonance studies in the lower-concentration regime using a novel method to produce isotope-labeled (N and C) recombinant melittin. We provide residue-specific structural characterization of melittin in dilute aqueous solution and in 2,2,2-trifluoroethanol/water mixtures, which mimic melittin structure-function and interactions in aqueous and membrane-like environments, respectively. We find that the cis-trans isomerization of Pro14 is key to changes in the secondary structure of melittin. Thus, this study provides residue-specific structural information about melittin in the free state and in a model of the substrate-bound state. These results, taken together with published work from other laboratories, reveal the peptide's structural versatility that resembles that of intrinsically disordered proteins and peptides.
近年来,由于人们越来越意识到蜂毒素及其变体的治疗潜力,因此对其重新产生了兴趣。蜂毒素是一种由 26 个氨基酸残基组成的肽类物质,也是蜜蜂毒液的一种有毒成分。蜂毒素与各种生物底物(如膜、糖胺聚糖和各种蛋白质)相互作用的多功能性激发了大量研究,旨在提高我们对这种相互作用的结构基础的理解。然而,这些研究主要集中在高浓度(>1mM)的蜂毒素溶液上,尽管蜂毒素在较低(微摩尔)浓度下通常是有效的。在这里,我们使用一种新方法在较低浓度范围内进行了高分辨率核磁共振研究,该方法可产生同位素标记的(N 和 C)重组蜂毒素。我们提供了在稀水溶液中和 2,2,2-三氟乙醇/水混合物中,蜂毒素的残基特异性结构特征,分别模拟了蜂毒素在水溶液和类膜环境中的结构-功能和相互作用。我们发现 Pro14 的顺反异构化是蜂毒素二级结构变化的关键。因此,这项研究提供了关于游离状态和底物结合状态模型中蜂毒素的残基特异性结构信息。这些结果与其他实验室发表的工作一起,揭示了该肽的结构多功能性,类似于天然无序蛋白质和肽。