Cantor Mauricio, Pires Mathias M, Marquitti Flavia M D, Raimundo Rafael L G, Sebastián-González Esther, Coltri Patricia P, Perez S Ivan, Barneche Diego R, Brandt Débora Y C, Nunes Kelly, Daura-Jorge Fábio G, Floeter Sergio R, Guimarães Paulo R
Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
Departamento de Ecologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
PLoS One. 2017 Feb 6;12(2):e0171691. doi: 10.1371/journal.pone.0171691. eCollection 2017.
Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness throughout biological scales can stimulate the debate on how pervasive nestedness may be in nature, while the theoretical emergent principles can aid further research on commonalities of biological networks.
生物网络遍及自然界。它们描述了生物组织各个层次的系统,从调节新陈代谢的分子到塑造生态系统动态的物种相互作用。网络思维揭示了复杂生物系统中反复出现的组织模式,例如连接元素形成半独立组(模块化)以及元素间相互作用的非随机分布。其他结构模式,如嵌套性,主要在由两组不重叠元素形成的生态网络中进行评估;关于其在其他组织层次上出现的信息尚缺。当连接较少的元素之间的相互作用形成连接较多的元素之间相互作用的适当子集时,就会出现嵌套性。直到最近,这些特性才在单模网络(其中所有元素都可以相互作用)中得到认识,单模网络描述了更为广泛的生物现象。在这里,我们计算了来自生物组织六个不同层次的各种单模网络系统中的嵌套性,这些系统描绘了基因和蛋白质相互作用、复杂表型、动物群落、集合种群、食物网和脊椎动物集合群落。我们的研究结果表明,嵌套性的出现与相互作用类型或生物尺度无关,并揭示了不同的系统可以共享嵌套组织特征,其特征是相互作用元素的包容性子集,连接性逐渐降低。我们首先探讨了嵌套结构对每个研究系统的影响,然后对嵌套网络的组装方式进行了理论推测。我们假设,由于一些过程,嵌套性在不同尺度上出现,这些过程虽然依赖于系统,但可能在两个特征之间存在一般折衷:特异性(系统元素可以具有的相互作用数量)和亲和力(这些元素如何相互连接)。我们关于嵌套性在整个生物尺度上出现的研究结果可以激发关于嵌套性在自然界中可能有多普遍的辩论,而理论上的涌现原则可以帮助进一步研究生物网络的共性。