Suppr超能文献

通过 SPRINT-Race 进行帕累托最优模型选择。

Pareto-Optimal Model Selection via SPRINT-Race.

出版信息

IEEE Trans Cybern. 2018 Feb;48(2):596-610. doi: 10.1109/TCYB.2017.2647821. Epub 2017 Jan 30.

Abstract

In machine learning, the notion of multi-objective model selection (MOMS) refers to the problem of identifying the set of Pareto-optimal models that optimize by compromising more than one predefined objectives simultaneously. This paper introduces SPRINT-Race, the first multi-objective racing algorithm in a fixed-confidence setting, which is based on the sequential probability ratio with indifference zone test. SPRINT-Race addresses the problem of MOMS with multiple stochastic optimization objectives in the proper Pareto-optimality sense. In SPRINT-Race, a pairwise dominance or non-dominance relationship is statistically inferred via a non-parametric, ternary-decision, dual-sequential probability ratio test. The overall probability of falsely eliminating any Pareto-optimal models or mistakenly returning any clearly dominated models is strictly controlled by a sequential Holm's step-down family-wise error rate control method. As a fixed-confidence model selection algorithm, the objective of SPRINT-Race is to minimize the computational effort required to achieve a prescribed confidence level about the quality of the returned models. The performance of SPRINT-Race is first examined via an artificially constructed MOMS problem with known ground truth. Subsequently, SPRINT-Race is applied on two real-world applications: 1) hybrid recommender system design and 2) multi-criteria stock selection. The experimental results verify that SPRINT-Race is an effective and efficient tool for such MOMS problems. code of SPRINT-Race is available at https://github.com/watera427/SPRINT-Race.

摘要

在机器学习中,多目标模型选择(MOMS)的概念是指同时优化多个预定义目标的帕累托最优模型集的识别问题。本文介绍了 SPRINT-Race,这是第一个在固定置信度设置下的多目标竞赛算法,它基于具有无差异区测试的序贯概率比。SPRINT-Race 解决了具有多个随机优化目标的 MOMS 问题,具有适当的帕累托最优意义。在 SPRINT-Race 中,通过非参数、三元决策、双序贯概率比测试来统计推断成对的优势或非优势关系。通过序贯 Holm 逐步降阶的组内误差率控制方法,严格控制错误淘汰任何帕累托最优模型或错误返回任何明显占优模型的总体概率。作为一种固定置信度模型选择算法,SPRINT-Race 的目标是最小化达到预定置信度所需的计算量,以获得返回模型的质量。SPRINT-Race 的性能首先通过具有已知真实情况的人工构建的 MOMS 问题进行检查。随后,将 SPRINT-Race 应用于两个实际应用:1)混合推荐系统设计和 2)多标准股票选择。实验结果验证了 SPRINT-Race 是此类 MOMS 问题的有效且高效的工具。SPRINT-Race 的代码可在 https://github.com/watera427/SPRINT-Race 上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验