Department of BIN Convergence Technology, Chonbuk National University, Jeonju 561-756, Republic of Korea.
Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, Republic of Korea.
J Colloid Interface Sci. 2017 May 15;494:338-344. doi: 10.1016/j.jcis.2017.01.100. Epub 2017 Jan 28.
A novel and efficient CeO-doped MnO nanorods decorated reduced graphene oxide (CeO-MnO/RGO) nanocomposite was successfully synthesized via hydrothermal method. The growth of the CeO doped MnO nanorods over GO sheets and reduction of GO were simultaneously carried out under hydrothermal treatment. The morphology and structure of as-synthesized nanocomposite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which revealed the formation of CeO-MnO decorated RGO nanocomposites. The electrochemical performance of as-prepared CeO-MnO/RGO nanocomposites as an active electrode material for supercapacitor was evaluated by cyclic voltammetry, charge-discharge, and electrochemical impedance spectroscopy (EIS) methods in 2M alkaline medium. The obtained results revealed that as-synthesized CeO-MnO/RGO nanocomposite exhibited higher specific capacitance (648F/g) as compared to other formulations (MnO/RGO nanocomposites: 315.13 F/g and MnO nanorods: 228.5 F/g) at the scan rate of 5mV/s. After 1000 cycles, it retained ∼90.4%, exhibiting a good stability. The high surface area, enhanced electrical conductivity, and good stability possess by the nanocomposite make this material a promising candidate to be applied as a supercapacitor electrode.
通过水热法成功合成了一种新颖高效的 CeO 掺杂 MnO 纳米棒修饰还原氧化石墨烯(CeO-MnO/RGO)纳米复合材料。CeO 掺杂 MnO 纳米棒在 GO 片上的生长和 GO 的还原在水热处理下同时进行。通过场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、X 射线衍射(XRD)和拉曼光谱对所合成的纳米复合材料的形貌和结构进行了表征,结果表明 CeO-MnO 纳米棒修饰 RGO 纳米复合材料的形成。在 2M 碱性介质中,通过循环伏安法、充放电和电化学阻抗谱(EIS)方法评估了作为超级电容器活性电极材料的制备 CeO-MnO/RGO 纳米复合材料的电化学性能。结果表明,与其他配方(MnO/RGO 纳米复合材料:315.13 F/g 和 MnO 纳米棒:228.5 F/g)相比,在扫描速率为 5mV/s 时,所合成的 CeO-MnO/RGO 纳米复合材料具有更高的比电容(648F/g)。经过 1000 次循环后,它保留了约 90.4%,表现出良好的稳定性。纳米复合材料具有高比表面积、增强的导电性和良好的稳定性,使其成为超级电容器电极的有前途的候选材料。