Yao Jun, Jia Yongfeng, Han Qingli, Yang Daotong, Pan Qingjiang, Yao Shanshan, Li Jiuming, Duan Limei, Liu Jinghai
Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia University for Nationalities (IMUN), Tongliao 028000, People's Republic of China.
School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
Nanotechnology. 2021 Apr 30;32(18):185401. doi: 10.1088/1361-6528/abdb62.
Chemical fabrication of a nanocomposite structure for electrode materials to regulate the ion diffusion channels and charge transfer resistances and Faradaic active sites is a versatile strategy towards building a high-performance supercapacitor. Here, a new ternary flower-sphere-like nanocomposite MnO-graphite (MG)/reduced graphene oxide (RGO) was designed using the RGO as a coating for the MG. MnO-graphite (MnO-4) was obtained by KMnO oxidizing the pretreated graphite in an acidic medium (pH = 4). The GO coating was finally reduced by the NaBH to prepare the ternary nanocomposite MG. The microstructures and pore sizes were investigated by x-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and nitrogen adsorption/desorption. The electrochemical properties of MG were systematically investigated by the cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy in NaSO solution. The MG as an electrode material for supercapacitor exhibits a specific capacitance of 478.2 and 454.6 F g at a current density of 1.0 and 10.0 A g, respectively. In addition, the capacitance retention was 90% after 8,000 cycles. The ternary nanocomposite enhanced electrochemical performance originates from the specific flower-sphere-like morphology and coating architecture bringing higher specific surface area and lower charge transfer resistance (R).
通过化学方法制备用于电极材料的纳米复合结构,以调节离子扩散通道、电荷转移电阻和法拉第活性位点,是构建高性能超级电容器的一种通用策略。在此,设计了一种新型的三元花球状纳米复合材料MnO-石墨(MG)/还原氧化石墨烯(RGO),使用RGO作为MG的涂层。MnO-石墨(MnO-4)是通过在酸性介质(pH = 4)中用KMnO4氧化预处理过的石墨而获得的。最终通过NaBH4还原GO涂层来制备三元纳米复合材料MG。通过X射线衍射、扫描电子显微镜、热重分析和氮吸附/脱附研究了其微观结构和孔径。在Na2SO4溶液中,通过循环伏安法、恒电流充放电和电化学阻抗谱系统地研究了MG的电化学性能。MG作为超级电容器的电极材料,在电流密度为1.0和10.0 A g-1时,分别表现出478.2和454.6 F g-1的比电容。此外,在8000次循环后电容保持率为90%。这种三元纳米复合材料增强的电化学性能源于其特定的花球状形态和涂层结构,带来了更高的比表面积和更低的电荷转移电阻(Rct)。