College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China.
Molecules. 2018 Jul 2;23(7):1607. doi: 10.3390/molecules23071607.
This work provides the experimental and theoretical fundamentals for detecting the molecular fingerprints of six kinds of pesticides by using terahertz (THz) time-domain spectroscopy (THz-TDS). The spectra of absorption coefficient and refractive index of the pesticides, chlorpyrifos, fipronil, carbofuran, dimethoate, methomyl, and thidiazuron are obtained in frequencies of 0.1⁻3.5 THz. To accurately describe the THz spectral characteristics of pesticides, the wavelet threshold de-noising (WTD) method with db 5 wavelet fucntion, 5-layer decomposition, and soft-threshold de-noising was used to eliminate the spectral noise. The spectral baseline correction (SBC) method based on asymmetric least squares smoothing was used to remove the baseline drift. Spectral results show that chlorpyrifo had three characteristic absorption peaks at 1.47, 1.93, and 2.73 THz. Fipronil showed three peaks at 0.76, 1.23, and 2.31 THz. Carbofuran showed two peaks at 2.72 and 3.06 THz. Dimethoate showed three peaks at 1.05, 1.89, and 2.92 THz. Methomyl showed five peaks at 1.01, 1.65, 1.91, 2.72, and 3.20 THz. Thidiazuron showed four peaks at 0.99, 1.57, 2.17, and 2.66 THz. The density functional theory (DFT) of B3LYP/6-31G+(d,p) was applied to simulate the molecular dynamics for peak analyzing of the pesticides based on isolated molecules. The theoretical spectra are in good agreement with the experimental spectra processed by WTD + SBC, which implies the validity of WTD + SBC spectral processing methods and the accuracy of DFT spectral peak analysis. These results support that the combination of THz-TDS and DFT is an effective tool for pesticide fingerprint analysis and the molecular dynamics simulations.
这项工作为使用太赫兹(THz)时域光谱(THz-TDS)检测六种农药的分子指纹提供了实验和理论基础。在 0.1⁻3.5 THz 的频率下,获得了毒死蜱、氟虫腈、克百威、乐果、灭多威和噻苯隆的吸收系数和折射率光谱。为了准确描述农药的太赫兹光谱特性,采用小波阈值去噪(WTD)方法结合 db5 小波函数、5 层分解和软阈值去噪消除光谱噪声,采用基于不对称最小二乘平滑的光谱基线校正(SBC)方法消除基线漂移。光谱结果表明,毒死蜱在 1.47、1.93 和 2.73 THz 处有三个特征吸收峰。氟虫腈在 0.76、1.23 和 2.31 THz 处有三个峰。克百威在 2.72 和 3.06 THz 处有两个峰。乐果在 1.05、1.89 和 2.92 THz 处有三个峰。灭多威在 1.01、1.65、1.91、2.72 和 3.20 THz 处有五个峰。噻苯隆在 0.99、1.57、2.17 和 2.66 THz 处有四个峰。采用 B3LYP/6-31G+(d,p)密度泛函理论(DFT)对孤立分子的农药进行峰分析的分子动力学进行模拟。理论光谱与经过 WTD+SBC 处理的实验光谱吻合较好,表明 WTD+SBC 光谱处理方法的有效性和 DFT 光谱峰分析的准确性。这些结果表明,THz-TDS 与 DFT 的结合是一种有效的农药指纹分析和分子动力学模拟工具。