Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania 16802-4500, USA.
BMC Microbiol. 2011 Jul 24;11:165. doi: 10.1186/1471-2180-11-165.
Acetate is the major source of methane in nature. The majority of investigations have focused on acetotrophic methanogens for which energy-conserving electron transport is dependent on the production and consumption of H₂ as an intermediate, although the great majority of acetotrophs are unable to metabolize H₂. The presence of cytochrome c and a complex (Ma-Rnf) homologous to the Rnf (Rhodobacter nitrogen fixation) complexes distributed in the domain Bacteria distinguishes non-H₂-utilizing Methanosarcina acetivorans from H₂-utilizing species suggesting fundamentally different electron transport pathways. Thus, the membrane-bound electron transport chain of acetate-grown M. acetivorans was investigated to advance a more complete understanding of acetotrophic methanogens.
A component of the CO dehydrogenase/acetyl-CoA synthase (CdhAE) was partially purified and shown to reduce a ferredoxin purified using an assay coupling reduction of the ferredoxin to oxidation of CdhAE. Mass spectrometry analysis of the ferredoxin identified the encoding gene among annotations for nine ferredoxins encoded in the genome. Reduction of purified membranes from acetate-grown cells with ferredoxin lead to reduction of membrane-associated multi-heme cytochrome c that was re-oxidized by the addition of either the heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB) or 2-hydoxyphenazine, the soluble analog of methanophenazine (MP). Reduced 2-hydoxyphenazine was re-oxidized by membranes that was dependent on addition of CoM-S-S-CoB. A genomic analysis of Methanosarcina thermophila, a non-H2-utilizing acetotrophic methanogen, identified genes homologous to cytochrome c and the Ma-Rnf complex of M. acetivorans.
The results support roles for ferredoxin, cytochrome c and MP in the energy-conserving electron transport pathway of non-H₂-utilizing acetotrophic methanogens. This is the first report of involvement of a cytochrome c in acetotrophic methanogenesis. The results suggest that diverse acetotrophic Methanosarcina species have evolved diverse membrane-bound electron transport pathways leading from ferredoxin and culminating with MP donating electrons to the heterodisulfide reductase (HdrDE) for reduction of CoM-S-S-CoB.
乙酸盐是自然界中甲烷的主要来源。大多数研究都集中在乙酸营养型产甲烷菌上,对于这些产甲烷菌来说,能量守恒的电子传递依赖于 H₂的产生和消耗作为中间产物,尽管绝大多数乙酸营养菌都不能代谢 H₂。细胞色素 c 和类似于 Rhodobacter 固氮复合体(Rnf)的复杂 Ma-Rnf 的存在将不能利用 H₂的 Methanosarcina acetivorans 与能利用 H₂的产甲烷菌区分开来,这表明它们具有根本不同的电子传递途径。因此,研究了乙酸盐生长的 M. acetivorans 的膜结合电子传递链,以更全面地了解乙酸营养型产甲烷菌。
部分纯化了 CO 脱氢酶/乙酰辅酶 A 合酶(CdhAE)的一个组成部分,并证明其可以还原使用一种偶联还原铁氧还蛋白和 CdhAE 氧化的测定法纯化的铁氧还蛋白。铁氧还蛋白的质谱分析确定了在基因组中编码的九个铁氧还蛋白的注释中编码基因。用铁氧还蛋白还原从乙酸盐生长的细胞的纯化膜导致与多血红素细胞色素 c 结合的还原,该细胞色素 c 可以通过添加辅酶 M 和辅酶 B 的异二硫键(CoM-S-S-CoB)或 2-羟基吩嗪(MP)的可溶性类似物而重新氧化。依赖于添加 CoM-S-S-CoB,还原的 2-羟基吩嗪被膜重新氧化。对非 H₂利用的乙酸营养型产甲烷菌 Methanosarcina thermophila 的基因组分析鉴定了与 M. acetivorans 的细胞色素 c 和 Ma-Rnf 复合体同源的基因。
结果支持铁氧还蛋白、细胞色素 c 和 MP 在非 H₂利用的乙酸营养型产甲烷菌的能量守恒电子传递途径中的作用。这是细胞色素 c 参与乙酸营养型产甲烷作用的首次报道。结果表明,不同的乙酸营养型 Methanosarcina 物种已经进化出不同的膜结合电子传递途径,这些途径从铁氧还蛋白开始,最终导致 MP 将电子递交给异二硫键还原酶(HdrDE),从而还原 CoM-S-S-CoB。