Taucher Jan, Haunost Mathias, Boxhammer Tim, Bach Lennart T, Algueró-Muñiz María, Riebesell Ulf
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
Alfred-Wegener-Institut Helmholtz-Zentrum for Polar and Marine Research, Biological Institute, Helgoland, Germany.
PLoS One. 2017 Feb 8;12(2):e0169737. doi: 10.1371/journal.pone.0169737. eCollection 2017.
Plankton communities play a key role in the marine food web and are expected to be highly sensitive to ongoing environmental change. Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. These changes-summarized by the term ocean acidification (OA)-can significantly affect the physiology of planktonic organisms. However, studies on the response of entire plankton communities to OA, which also include indirect effects via food-web interactions, are still relatively rare. Thus, it is presently unclear how OA could affect the functioning of entire ecosystems and biogeochemical element cycles. In this study, we report from a long-term in situ mesocosm experiment, where we investigated the response of natural plankton communities in temperate waters (Gullmarfjord, Sweden) to elevated CO2 concentrations and OA as expected for the end of the century (~760 μatm pCO2). Based on a plankton-imaging approach, we examined size structure, community composition and food web characteristics of the whole plankton assemblage, ranging from picoplankton to mesozooplankton, during an entire winter-to-summer succession. The plankton imaging system revealed pronounced temporal changes in the size structure of the copepod community over the course of the plankton bloom. The observed shift towards smaller individuals resulted in an overall decrease of copepod biomass by 25%, despite increasing numerical abundances. Furthermore, we observed distinct effects of elevated CO2 on biomass and size structure of the entire plankton community. Notably, the biomass of copepods, dominated by Pseudocalanus acuspes, displayed a tendency towards elevated biomass by up to 30-40% under simulated ocean acidification. This effect was significant for certain copepod size classes and was most likely driven by CO2-stimulated responses of primary producers and a complex interplay of trophic interactions that allowed this CO2 effect to propagate up the food web. Such OA-induced shifts in plankton community structure could have far-reaching consequences for food-web interactions, biomass transfer to higher trophic levels and biogeochemical cycling of marine ecosystems.
浮游生物群落在海洋食物网中起着关键作用,预计对当前的环境变化高度敏感。海洋对人为二氧化碳(CO₂)的吸收导致海洋碳酸盐化学发生显著变化,海水pH值降低。这些变化——用海洋酸化(OA)一词概括——会显著影响浮游生物的生理机能。然而,关于整个浮游生物群落对海洋酸化的响应(其中还包括通过食物网相互作用产生的间接影响)的研究仍然相对较少。因此,目前尚不清楚海洋酸化如何影响整个生态系统的功能以及生物地球化学元素循环。在本研究中,我们报告了一项长期的原位中尺度生态系统实验,在该实验中,我们研究了温带水域(瑞典的古尔马峡湾)的天然浮游生物群落对预计到本世纪末将会出现的升高的二氧化碳浓度和海洋酸化情况(约760微巴pCO₂)的响应。基于浮游生物成像方法,我们在整个从冬季到夏季的演替过程中,研究了从微微型浮游生物到中型浮游生物的整个浮游生物组合的大小结构、群落组成和食物网特征。浮游生物成像系统揭示了在浮游生物大量繁殖过程中,桡足类群落的大小结构随时间发生的显著变化。尽管数量丰度增加,但观察到的向较小个体的转变导致桡足类生物量总体下降了25%。此外,我们观察到升高的二氧化碳对整个浮游生物群落的生物量和大小结构有明显影响。值得注意的是,在模拟海洋酸化条件下,以尖额伪哲水蚤为主的桡足类生物量有升高多达30% - 40%的趋势。这种影响在某些桡足类大小类别中很显著,最有可能是由二氧化碳刺激初级生产者的反应以及营养相互作用的复杂相互作用驱动的,这种相互作用使得这种二氧化碳效应能够在食物网中向上传播。这种由海洋酸化引起的浮游生物群落结构变化可能对食物网相互作用、生物量向更高营养级的转移以及海洋生态系统的生物地球化学循环产生深远影响。