Gӧrӧcs Zoltán, Tamamitsu Miu, Bianco Vittorio, Wolf Patrick, Roy Shounak, Shindo Koyoshi, Yanny Kyrollos, Wu Yichen, Koydemir Hatice Ceylan, Rivenson Yair, Ozcan Aydogan
1Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095 USA.
2Bioengineering Department, University of California, Los Angeles, CA 90095 USA.
Light Sci Appl. 2018 Sep 19;7:66. doi: 10.1038/s41377-018-0067-0. eCollection 2018.
We report a deep learning-enabled field-portable and cost-effective imaging flow cytometer that automatically captures phase-contrast color images of the contents of a continuously flowing water sample at a throughput of 100 mL/h. The device is based on partially coherent lens-free holographic microscopy and acquires the diffraction patterns of flowing micro-objects inside a microfluidic channel. These holographic diffraction patterns are reconstructed in real time using a deep learning-based phase-recovery and image-reconstruction method to produce a color image of each micro-object without the use of external labeling. Motion blur is eliminated by simultaneously illuminating the sample with red, green, and blue light-emitting diodes that are pulsed. Operated by a laptop computer, this portable device measures 15.5 cm × 15 cm × 12.5 cm, weighs 1 kg, and compared to standard imaging flow cytometers, it provides extreme reductions of cost, size and weight while also providing a high volumetric throughput over a large object size range. We demonstrated the capabilities of this device by measuring ocean samples at the Los Angeles coastline and obtaining images of its micro- and nanoplankton composition. Furthermore, we measured the concentration of a potentially toxic alga () in six public beaches in Los Angeles and achieved good agreement with measurements conducted by the California Department of Public Health. The cost-effectiveness, compactness, and simplicity of this computational platform might lead to the creation of a network of imaging flow cytometers for large-scale and continuous monitoring of the ocean microbiome, including its plankton composition.
我们报告了一种基于深度学习的现场便携式且经济高效的成像流式细胞仪,它能够以100毫升/小时的通量自动捕获连续流动水样中物质的相衬彩色图像。该设备基于部分相干无透镜全息显微镜,可获取微流控通道内流动的微小物体的衍射图案。利用基于深度学习的相位恢复和图像重建方法实时重建这些全息衍射图案,无需外部标记即可生成每个微小物体的彩色图像。通过用脉冲的红色、绿色和蓝色发光二极管同时照射样品来消除运动模糊。该便携式设备由笔记本电脑操作,尺寸为15.5厘米×15厘米×12.5厘米,重1千克,与标准成像流式细胞仪相比,它在成本、尺寸和重量方面大幅降低,同时在较大的物体尺寸范围内提供高体积通量。我们通过测量洛杉矶海岸线的海洋样本并获取其微型和纳米浮游生物组成的图像,展示了该设备的功能。此外,我们测量了洛杉矶六个公共海滩中一种潜在有毒藻类()的浓度,并与加利福尼亚州公共卫生部进行的测量结果达成了良好的一致性。这个计算平台的成本效益、紧凑性和简易性可能会促成一个成像流式细胞仪网络的建立,用于对海洋微生物群落,包括其浮游生物组成进行大规模和连续监测。