Suppr超能文献

小鼠精子中的染色质状态与胚胎和成体调控格局相关。

Chromatin States in Mouse Sperm Correlate with Embryonic and Adult Regulatory Landscapes.

作者信息

Jung Yoon Hee, Sauria Michael E G, Lyu Xiaowen, Cheema Manjinder S, Ausio Juan, Taylor James, Corces Victor G

机构信息

Department of Biology, Emory University, Atlanta, GA 30322, USA.

Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.

出版信息

Cell Rep. 2017 Feb 7;18(6):1366-1382. doi: 10.1016/j.celrep.2017.01.034.

Abstract

The mammalian sperm genome is thought to lack substantial information for the regulation of future expression after fertilization. Here, we show that most promoters in mouse sperm are flanked by well-positioned nucleosomes marked by active histone modifications. Analysis of these modifications suggests that many enhancers and super-enhancers functional in embryonic and adult tissues are already specified in sperm. The sperm genome is bound by CTCF and cohesin at sites that are also present in round spermatids and embryonic stem cells (ESCs). These sites mediate interactions that organize the sperm genome into domains and compartments that overlap extensively with those found in mESCs. These results suggest that sperm carry a rich source of regulatory information, encoded in part by its three-dimensional folding specified by CTCF and cohesin. This information may contribute to future expression during embryonic and adult life, suggesting mechanisms by which environmental effects on the paternal germline are transmitted transgenerationally.

摘要

哺乳动物精子基因组被认为缺乏受精后调控未来基因表达的大量信息。在此,我们表明小鼠精子中的大多数启动子两侧都有定位良好的核小体,这些核小体带有活跃的组蛋白修饰标记。对这些修饰的分析表明,许多在胚胎和成年组织中起作用的增强子和超级增强子在精子中就已被确定。精子基因组在圆形精子细胞和胚胎干细胞(ESC)中也存在的位点上与CTCF和黏连蛋白结合。这些位点介导的相互作用将精子基因组组织成与小鼠胚胎干细胞中广泛重叠的结构域和间隔区。这些结果表明,精子携带丰富的调控信息来源,部分由CTCF和黏连蛋白指定的三维折叠编码。这些信息可能有助于胚胎期和成年期的未来基因表达,提示了父系生殖系的环境影响跨代传递的机制。

相似文献

1
Chromatin States in Mouse Sperm Correlate with Embryonic and Adult Regulatory Landscapes.
Cell Rep. 2017 Feb 7;18(6):1366-1382. doi: 10.1016/j.celrep.2017.01.034.
2
Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.
Nat Cell Biol. 2017 Aug;19(8):952-961. doi: 10.1038/ncb3573. Epub 2017 Jul 24.
3
High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm.
Dev Cell. 2014 Jul 14;30(1):11-22. doi: 10.1016/j.devcel.2014.05.024. Epub 2014 Jul 3.
4
Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells.
Cell Rep. 2019 Jun 18;27(12):3500-3510.e4. doi: 10.1016/j.celrep.2019.05.078.
6
7
Paternal nucleosomes: are they retained in developmental promoters or gene deserts?
Dev Cell. 2014 Jul 14;30(1):6-8. doi: 10.1016/j.devcel.2014.06.025.
8
Defining genome architecture at base-pair resolution.
Nature. 2021 Jul;595(7865):125-129. doi: 10.1038/s41586-021-03639-4. Epub 2021 Jun 9.
9
CTCF Binding Polarity Determines Chromatin Looping.
Mol Cell. 2015 Nov 19;60(4):676-84. doi: 10.1016/j.molcel.2015.09.023. Epub 2015 Oct 29.
10
The contribution of cohesin-SA1 to gene expression and chromatin architecture in two murine tissues.
Nucleic Acids Res. 2015 Mar 31;43(6):3056-67. doi: 10.1093/nar/gkv144. Epub 2015 Mar 3.

引用本文的文献

2
The rebirth of repressive chromatin during early vertebrate development.
Ann N Y Acad Sci. 2025 Jul;1549(1):44-54. doi: 10.1111/nyas.15360. Epub 2025 Jun 5.
3
Canonical and Variant Nucleosome Reprogramming from Sperm to Blastula.
Methods Mol Biol. 2025;2923:17-32. doi: 10.1007/978-1-0716-4522-2_2.
6
Higher sperm H3K4me3 levels are associated with idiopathic recurrent pregnancy loss.
Epigenetics. 2025 Dec;20(1):2498859. doi: 10.1080/15592294.2025.2498859. Epub 2025 Apr 29.
7
Three-dimensional genome structures of single mammalian sperm.
Nat Commun. 2025 Apr 23;16(1):3805. doi: 10.1038/s41467-025-59055-z.
8
Epigenome dynamics in early mammalian embryogenesis.
Nat Rev Genet. 2025 Apr 3. doi: 10.1038/s41576-025-00831-4.
10
Argonaute CSR-1A promotes H3K9me3 maintenance to protect somatic development in offspring.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf127.

本文引用的文献

1
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution.
Nat Genet. 2016 Oct;48(10):1193-203. doi: 10.1038/ng.3646. Epub 2016 Aug 15.
2
Epigenetics, cellular memory and gene regulation.
Curr Biol. 2016 Jul 25;26(14):R644-8. doi: 10.1016/j.cub.2016.06.011.
3
Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture.
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4504-12. doi: 10.1073/pnas.1609643113. Epub 2016 Jul 18.
4
Intergenerational Transfer of Epigenetic Information in Sperm.
Cold Spring Harb Perspect Med. 2016 May 2;6(5):a022988. doi: 10.1101/cshperspect.a022988.
5
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.
Science. 2016 Jan 22;351(6271):391-396. doi: 10.1126/science.aad6780. Epub 2015 Dec 31.
6
Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.
Genome Res. 2015 Nov;25(11):1757-70. doi: 10.1101/gr.192294.115. Epub 2015 Aug 27.
7
CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function.
Cell. 2015 Aug 13;162(4):900-10. doi: 10.1016/j.cell.2015.07.038.
9
Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.
Nat Biotechnol. 2015 Jul;33(7):769-74. doi: 10.1038/nbt.3270. Epub 2015 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验