Suppr超能文献

CTCF位点的CRISPR倒置改变基因组拓扑结构和增强子/启动子功能。

CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function.

作者信息

Guo Ya, Xu Quan, Canzio Daniele, Shou Jia, Li Jinhuan, Gorkin David U, Jung Inkyung, Wu Haiyang, Zhai Yanan, Tang Yuanxiao, Lu Yichao, Wu Yonghu, Jia Zhilian, Li Wei, Zhang Michael Q, Ren Bing, Krainer Adrian R, Maniatis Tom, Wu Qiang

机构信息

Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, SJTU, Shanghai 200240, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (MOE), Bio-X Center, School of Life Sciences and Biotechnology, SJTU, Shanghai 200240, China.

Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168(th) Street, New York, NY 10032, USA.

出版信息

Cell. 2015 Aug 13;162(4):900-10. doi: 10.1016/j.cell.2015.07.038.

Abstract

CTCF and the associated cohesin complex play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and β-globin as model genes. Inversion of CBS elements within the Pcdh enhancer reconfigures the topology of chromatin loops between the distal enhancer and target promoters and alters gene-expression patterns. Thus, although enhancers can function in an orientation-independent manner in reporter assays, in the native chromosome context, the orientation of at least some enhancers carrying CBSs can determine both the architecture of topological chromatin domains and enhancer/promoter specificity. These findings reveal how 3D chromosome architecture can be encoded by linear genome sequences.

摘要

CTCF及相关的黏连蛋白复合体在哺乳动物基因组的绝缘子功能和高阶染色质组织中起着核心作用。最近的研究发现CTCF结合位点(CBSs)的方向与染色质环之间存在关联。为了检验这一观察结果的功能意义,我们将基于CRISPR/Cas9的基因组DNA片段编辑与染色体构象捕获实验相结合,以原钙黏蛋白(Pcdh)和β-珠蛋白作为模型基因,证明CBSs的位置和相对方向决定了哺乳动物基因组中长程染色质环化的特异性。Pcdh增强子内CBS元件的倒置会重新配置远端增强子与靶启动子之间染色质环的拓扑结构,并改变基因表达模式。因此,尽管在报告基因检测中增强子可以以不依赖方向的方式发挥作用,但在天然染色体环境中,至少一些携带CBSs的增强子的方向可以决定拓扑染色质结构域的结构以及增强子/启动子的特异性。这些发现揭示了线性基因组序列如何编码三维染色体结构。

相似文献

1
CRISPR Inversion of CTCF Sites Alters Genome Topology and Enhancer/Promoter Function.
Cell. 2015 Aug 13;162(4):900-10. doi: 10.1016/j.cell.2015.07.038.
2
Three-dimensional genome architectural CCCTC-binding factor makes choice in duplicated enhancers at Pcdhα locus.
Sci China Life Sci. 2020 Jun;63(6):835-844. doi: 10.1007/s11427-019-1598-4. Epub 2020 Apr 2.
4
CTCF Binding Polarity Determines Chromatin Looping.
Mol Cell. 2015 Nov 19;60(4):676-84. doi: 10.1016/j.molcel.2015.09.023. Epub 2015 Oct 29.
5
Molecular mechanism of directional CTCF recognition of a diverse range of genomic sites.
Cell Res. 2017 Nov;27(11):1365-1377. doi: 10.1038/cr.2017.131. Epub 2017 Oct 27.
6
Cell type specificity of chromatin organization mediated by CTCF and cohesin.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3651-6. doi: 10.1073/pnas.0912087107. Epub 2010 Feb 2.
8
Cohesin mediates chromatin interactions that regulate mammalian β-globin expression.
J Biol Chem. 2011 May 20;286(20):17870-8. doi: 10.1074/jbc.M110.207365. Epub 2011 Mar 29.
9
CTCF: the protein, the binding partners, the binding sites and their chromatin loops.
Philos Trans R Soc Lond B Biol Sci. 2013 May 6;368(1620):20120369. doi: 10.1098/rstb.2012.0369. Print 2013.
10
Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo.
Nat Cell Biol. 2017 Aug;19(8):952-961. doi: 10.1038/ncb3573. Epub 2017 Jul 24.

引用本文的文献

1
2
3D Genome Engineering: Current Advances and Therapeutic Opportunities in Human Diseases.
Research (Wash D C). 2025 Sep 1;8:0865. doi: 10.34133/research.0865. eCollection 2025.
3
The emerging sequence grammar of 3D genome organisation.
Hum Genet. 2025 Aug 25. doi: 10.1007/s00439-025-02772-8.
5
Histone Acetylation Differentially Modulates CTCF-CTCF Loops and Intra-TAD Interactions.
bioRxiv. 2025 Aug 1:2025.07.29.667515. doi: 10.1101/2025.07.29.667515.
6
CRISPR-based functional genomics tools in vertebrate models.
Exp Mol Med. 2025 Jul;57(7):1355-1372. doi: 10.1038/s12276-025-01514-0. Epub 2025 Jul 31.
7
Extrusion fountains are restricted by WAPL-dependent cohesin release and CTCF barriers.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf549.

本文引用的文献

1
Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9.
J Mol Cell Biol. 2015 Aug;7(4):284-98. doi: 10.1093/jmcb/mjv016. Epub 2015 Mar 10.
2
Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture.
Cell Rep. 2015 Mar 3;10(8):1297-309. doi: 10.1016/j.celrep.2015.02.004. Epub 2015 Feb 26.
3
CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.
Science. 2015 Feb 27;347(6225):1017-21. doi: 10.1126/science.1262088.
4
Chromatin architecture reorganization during stem cell differentiation.
Nature. 2015 Feb 19;518(7539):331-6. doi: 10.1038/nature14222.
5
A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell. 2014 Dec 18;159(7):1665-80. doi: 10.1016/j.cell.2014.11.021. Epub 2014 Dec 11.
6
Chromatin loops as allosteric modulators of enhancer-promoter interactions.
PLoS Comput Biol. 2014 Oct 23;10(10):e1003867. doi: 10.1371/journal.pcbi.1003867. eCollection 2014 Oct.
7
Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes.
Cell. 2014 Oct 9;159(2):374-387. doi: 10.1016/j.cell.2014.09.030.
9
Regulation of the protocadherin Celsr3 gene and its role in globus pallidus development and connectivity.
Mol Cell Biol. 2014 Oct;34(20):3895-910. doi: 10.1128/MCB.00760-14. Epub 2014 Aug 11.
10
Looping back to leap forward: transcription enters a new era.
Cell. 2014 Mar 27;157(1):13-25. doi: 10.1016/j.cell.2014.02.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验