Guo Ya, Xu Quan, Canzio Daniele, Shou Jia, Li Jinhuan, Gorkin David U, Jung Inkyung, Wu Haiyang, Zhai Yanan, Tang Yuanxiao, Lu Yichao, Wu Yonghu, Jia Zhilian, Li Wei, Zhang Michael Q, Ren Bing, Krainer Adrian R, Maniatis Tom, Wu Qiang
Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, Institute of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, SJTU, Shanghai 200240, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (MOE), Bio-X Center, School of Life Sciences and Biotechnology, SJTU, Shanghai 200240, China.
Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, 701 West 168(th) Street, New York, NY 10032, USA.
Cell. 2015 Aug 13;162(4):900-10. doi: 10.1016/j.cell.2015.07.038.
CTCF and the associated cohesin complex play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and β-globin as model genes. Inversion of CBS elements within the Pcdh enhancer reconfigures the topology of chromatin loops between the distal enhancer and target promoters and alters gene-expression patterns. Thus, although enhancers can function in an orientation-independent manner in reporter assays, in the native chromosome context, the orientation of at least some enhancers carrying CBSs can determine both the architecture of topological chromatin domains and enhancer/promoter specificity. These findings reveal how 3D chromosome architecture can be encoded by linear genome sequences.
CTCF及相关的黏连蛋白复合体在哺乳动物基因组的绝缘子功能和高阶染色质组织中起着核心作用。最近的研究发现CTCF结合位点(CBSs)的方向与染色质环之间存在关联。为了检验这一观察结果的功能意义,我们将基于CRISPR/Cas9的基因组DNA片段编辑与染色体构象捕获实验相结合,以原钙黏蛋白(Pcdh)和β-珠蛋白作为模型基因,证明CBSs的位置和相对方向决定了哺乳动物基因组中长程染色质环化的特异性。Pcdh增强子内CBS元件的倒置会重新配置远端增强子与靶启动子之间染色质环的拓扑结构,并改变基因表达模式。因此,尽管在报告基因检测中增强子可以以不依赖方向的方式发挥作用,但在天然染色体环境中,至少一些携带CBSs的增强子的方向可以决定拓扑染色质结构域的结构以及增强子/启动子的特异性。这些发现揭示了线性基因组序列如何编码三维染色体结构。