Suppr超能文献

支链氨基酸分解代谢缺陷会破坏葡萄糖代谢并使心脏对缺血再灌注损伤敏感。

Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury.

作者信息

Li Tao, Zhang Zhen, Kolwicz Stephen C, Abell Lauren, Roe Nathan D, Kim Maengjo, Zhou Bo, Cao Yang, Ritterhoff Julia, Gu Haiwei, Raftery Daniel, Sun Haipeng, Tian Rong

机构信息

West China-Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, PRC; Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.

Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.

出版信息

Cell Metab. 2017 Feb 7;25(2):374-385. doi: 10.1016/j.cmet.2016.11.005.

Abstract

Elevated levels of branched-chain amino acids (BCAAs) have recently been implicated in the development of cardiovascular and metabolic diseases, but the molecular mechanisms are unknown. In a mouse model of impaired BCAA catabolism (knockout [KO]), we found that chronic accumulation of BCAAs suppressed glucose metabolism and sensitized the heart to ischemic injury. High levels of BCAAs selectively disrupted mitochondrial pyruvate utilization through inhibition of pyruvate dehydrogenase complex (PDH) activity. Furthermore, downregulation of the hexosamine biosynthetic pathway in KO hearts decreased protein O-linked N-acetylglucosamine (O-GlcNAc) modification and inactivated PDH, resulting in significant decreases in glucose oxidation. Although the metabolic remodeling in KO did not affect baseline cardiac energetics or function, it rendered the heart vulnerable to ischemia-reperfusion injury. Promoting BCAA catabolism or normalizing glucose utilization by overexpressing GLUT1 in the KO heart rescued the metabolic and functional outcome. These observations revealed a novel role of BCAA catabolism in regulating cardiac metabolism and stress response.

摘要

近期研究表明,支链氨基酸(BCAAs)水平升高与心血管疾病和代谢性疾病的发生发展有关,但其分子机制尚不清楚。在BCAA分解代谢受损的小鼠模型(基因敲除[KO])中,我们发现BCAAs的长期积累会抑制葡萄糖代谢,并使心脏对缺血性损伤更加敏感。高水平的BCAAs通过抑制丙酮酸脱氢酶复合体(PDH)的活性,选择性地破坏线粒体丙酮酸的利用。此外,KO心脏中己糖胺生物合成途径的下调会降低蛋白质O-连接的N-乙酰葡糖胺(O-GlcNAc)修饰,并使PDH失活,导致葡萄糖氧化显著减少。尽管KO中的代谢重塑并未影响基线心脏能量代谢或功能,但它使心脏易受缺血-再灌注损伤。通过在KO心脏中过表达GLUT1来促进BCAA分解代谢或使葡萄糖利用正常化,可挽救代谢和功能结局。这些观察结果揭示了BCAA分解代谢在调节心脏代谢和应激反应中的新作用。

相似文献

3
Deletion of BCATm increases insulin-stimulated glucose oxidation in the heart.
Metabolism. 2021 Nov;124:154871. doi: 10.1016/j.metabol.2021.154871. Epub 2021 Sep 1.
4
Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction.
Am J Physiol Heart Circ Physiol. 2016 Nov 1;311(5):H1160-H1169. doi: 10.1152/ajpheart.00114.2016. Epub 2016 Aug 19.
5
Diabetes and branched-chain amino acids: What is the link?
J Diabetes. 2018 May;10(5):350-352. doi: 10.1111/1753-0407.12645. Epub 2018 Feb 13.
6
Defective muscle ketone body oxidation disrupts BCAA catabolism by altering mitochondrial branched-chain aminotransferase.
Am J Physiol Endocrinol Metab. 2023 May 1;324(5):E425-E436. doi: 10.1152/ajpendo.00206.2022. Epub 2023 Mar 29.
7
Branched-Chain Amino Acid Catabolism Promotes Thrombosis Risk by Enhancing Tropomodulin-3 Propionylation in Platelets.
Circulation. 2020 Jul 7;142(1):49-64. doi: 10.1161/CIRCULATIONAHA.119.043581. Epub 2020 Mar 23.
8
Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure.
Cardiovasc Diabetol. 2019 Jul 5;18(1):86. doi: 10.1186/s12933-019-0892-3.
9
CypD(-/-) hearts have altered levels of proteins involved in Krebs cycle, branch chain amino acid degradation and pyruvate metabolism.
J Mol Cell Cardiol. 2013 Mar;56:81-90. doi: 10.1016/j.yjmcc.2012.12.004. Epub 2012 Dec 19.

引用本文的文献

2
Role of branched chain amino acid metabolism on aging.
Biogerontology. 2025 Aug 23;26(5):169. doi: 10.1007/s10522-025-10309-9.
3
Integrated Systems Biology Identifies Disruptions in Mitochondrial Function and Metabolism as Key Contributors to HFpEF.
JACC Basic Transl Sci. 2025 Aug 15;10(9):101334. doi: 10.1016/j.jacbts.2025.101334.
5
Mitophagy mitigates mitochondrial fatty acid β-oxidation deficient cardiomyopathy.
Nat Commun. 2025 Jul 1;16(1):5465. doi: 10.1038/s41467-025-60670-z.
7
Acute kidney injury through a metabolic lens: pathological reprogramming mechanisms and clinical translation potential.
Front Physiol. 2025 Jun 6;16:1602865. doi: 10.3389/fphys.2025.1602865. eCollection 2025.

本文引用的文献

1
Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure.
Circulation. 2016 May 24;133(21):2038-49. doi: 10.1161/CIRCULATIONAHA.115.020226. Epub 2016 Apr 8.
2
Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress.
Diabetes. 2015 Aug;64(8):2817-27. doi: 10.2337/db14-1943. Epub 2015 Apr 9.
3
O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation.
Nat Cell Biol. 2014 Dec;16(12):1215-26. doi: 10.1038/ncb3066. Epub 2014 Nov 24.
5
Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury.
J Am Heart Assoc. 2014 Jan 27;3(1):e000555. doi: 10.1161/JAHA.113.000555.
6
Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.
Circ Res. 2013 Aug 16;113(5):603-16. doi: 10.1161/CIRCRESAHA.113.302095.
7
A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence.
Nature. 2013 Jun 6;498(7452):109-12. doi: 10.1038/nature12154. Epub 2013 May 19.
9
Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells.
Nat Protoc. 2012 May 31;7(6):1235-46. doi: 10.1038/nprot.2012.058.
10
Interplay between lipids and branched-chain amino acids in development of insulin resistance.
Cell Metab. 2012 May 2;15(5):606-14. doi: 10.1016/j.cmet.2012.01.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验