Suppr超能文献

利用石墨烯网络构建仿生自监测陶瓷。

Using graphene networks to build bioinspired self-monitoring ceramics.

机构信息

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, London SW7 2AZ, UK.

出版信息

Nat Commun. 2017 Feb 9;8:14425. doi: 10.1038/ncomms14425.

Abstract

The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20-30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor 'in situ' structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.

摘要

石墨烯的特性为制造具有独特结构和功能特性的复合材料开辟了新的机会。然而,要实现这一目标,我们应该用精心设计的结构来构建材料。在这里,我们通过将石墨烯泡沫与预陶瓷聚合物和火花等离子烧结相结合,来描述陶瓷-石墨烯复合材料的制造。其结果是得到一种含有相互连接的、非常薄(20-30nm)的、微观的、电导率高的碳界面的复合材料。该网络的电导率比具有类似石墨烯或碳纳米管含量的其他陶瓷高两个数量级,可以用于监测“原位”结构完整性。此外,它还可以引导裂纹扩展,促进稳定的裂纹增长,并将断裂阻力提高一个数量级。这些结果表明,纳米材料的合理整合可能是制造结合独特机械和功能性能的复合材料的一条有成效的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd69/5309856/3b6002dec8e2/ncomms14425-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验