Barg Suelen, Perez Felipe Macul, Ni Na, do Vale Pereira Paula, Maher Robert C, Garcia-Tuñon Esther, Eslava Salvador, Agnoli Stefano, Mattevi Cecilia, Saiz Eduardo
Department of Materials, Centre for Advanced Structural Ceramics, Imperial College London, London SW7 2AZ, UK.
Department of Physics, Imperial College London, London SW7 2AZ, UK.
Nat Commun. 2014 Jul 7;5:4328. doi: 10.1038/ncomms5328.
The widespread technological introduction of graphene beyond electronics rests on our ability to assemble this two-dimensional building block into three-dimensional structures for practical devices. To achieve this goal we need fabrication approaches that are able to provide an accurate control of chemistry and architecture from nano to macroscopic levels. Here, we describe a versatile technique to build ultralight (density ≥1 mg cm(-3)) cellular networks based on the use of soft templates and the controlled segregation of chemically modified graphene to liquid interfaces. These novel structures can be tuned for excellent conductivity; versatile mechanical response (elastic-brittle to elastomeric, reversible deformation, high energy absorption) and organic absorption capabilities (above 600 g per gram of material). The approach can be used to uncover the basic principles that will guide the design of practical devices that by combining unique mechanical and functional performance will generate new technological opportunities.
石墨烯在电子学之外的广泛技术应用取决于我们将这种二维构建块组装成用于实际设备的三维结构的能力。为实现这一目标,我们需要能够在从纳米到宏观层面精确控制化学性质和结构的制造方法。在此,我们描述了一种通用技术,该技术基于使用软模板以及将化学修饰的石墨烯可控地分离到液体界面来构建超轻(密度≥1 mg cm⁻³)的蜂窝网络。这些新颖的结构可进行调整以具备优异的导电性、多样的机械响应(从弹性脆性到弹性体、可逆变形、高能量吸收)以及有机吸收能力(每克材料超过600克)。该方法可用于揭示一些基本原理,这些原理将指导实际设备的设计,通过结合独特的机械和功能性能将创造新的技术机遇。