Complex Materials, Department of Materials, ETH Zürich, 8093, Zurich, Switzerland.
Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
Sci Rep. 2021 Jan 15;11(1):1621. doi: 10.1038/s41598-021-81068-z.
The brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the "mortar" phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities. Such metal-ceramic composites are prepared through the sol-gel deposition of iron-based coatings on alumina platelets and the magnetically-driven assembly of the pre-coated platelets into nacre-like architectures, followed by pressure-assisted densification at 1450 °C. With the help of state-of-the-art characterization techniques, we show that this processing route leads to lightweight inorganic structures that display outstanding fracture resistance, show noticeable magnetization and are amenable to fast induction heating. Materials with this set of properties might find use in transport, aerospace and robotic applications that require weight minimization combined with magnetic, electrical or thermal functionalities.
生物珍珠层的实体结构启发了具有增强的断裂韧性和多种功能的合成复合材料的发展。虽然使用金属作为“灰浆”相是最大限度地提高整体复合材料断裂韧性的有吸引力的选择,但由于结构中存在金属而可能实现的非机械功能仍然相对有限且尚未得到探索。我们使用铁作为灰浆相,开发并研究了具有高断裂韧性和刚度的珍珠层状复合材料,同时具有独特的磁性、电性和热性功能。这种金属-陶瓷复合材料是通过在氧化铝薄片上沉积铁基涂层的溶胶-凝胶法以及在磁场驱动下将预涂覆的薄片组装成珍珠层状结构来制备的,然后在 1450°C 下进行加压致密化。借助最先进的表征技术,我们表明,这种加工路线导致了轻质无机结构,这些结构表现出出色的抗断裂性,显示出明显的磁化作用,并易于快速感应加热。具有这种性能集的材料可能会在运输、航空航天和机器人应用中找到用途,这些应用需要最小化重量,同时具有磁性、电性或热性功能。