Narwani Tarun Jairaj, Santuz Hubert, Shinada Nicolas, Melarkode Vattekatte Akhila, Ghouzam Yassine, Srinivasan Narayanasamy, Gelly Jean-Christophe, de Brevern Alexandre G
INSERM, U 1134, DSIMB, 6, rue Alexandre Cabanel, 75739, Paris Cedex 15, France.
Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, 75739, Paris, France.
Amino Acids. 2017 Apr;49(4):705-713. doi: 10.1007/s00726-017-2385-6. Epub 2017 Feb 9.
About half of the globular proteins are composed of regular secondary structures, α-helices, and β-sheets, while the rest are constituted of irregular secondary structures, such as turns or coil conformations. Other regular secondary structures are often ignored, despite their importance in biological processes. Among such structures, the polyproline II helix (PPII) has interesting behaviours. PPIIs are not usually associated with conventional stabilizing interactions, and recent studies have observed that PPIIs are more frequent than anticipated. In addition, it is suggested that they may have an important functional role, particularly in protein-protein or protein-nucleic acid interactions and recognition. Residues associated with PPII conformations represent nearly 5% of the total residues, but the lack of PPII assignment approaches prevents their systematic analysis. This short review will present current knowledge and recent research in PPII area. In a first step, the different methodologies able to assign PPII are presented. In the second step, recent studies that have shown new perspectives in PPII analysis in terms of structure and function are underlined with three cases: (1) PPII in protein structures. For instance, the first crystal structure of an oligoproline adopting an all-trans polyproline II (PPII) helix had been presented; (2) the involvement of PPII in different diseases and drug designs; and (3) an interesting extension of PPII study in the protein dynamics. For instance, PPIIs are often linked to disorder region analysis and the precise analysis of a potential PPII helix in hypogonadism shows unanticipated PPII formations in the patient mutation, while it is not observed in the wild-type form of KISSR1 protein.
大约一半的球状蛋白质由规则的二级结构、α螺旋和β折叠组成,而其余的则由不规则的二级结构构成,如转角或卷曲构象。其他规则的二级结构尽管在生物过程中很重要,但常常被忽视。在这些结构中,多聚脯氨酸II螺旋(PPII)具有有趣的特性。PPII通常不与传统的稳定相互作用相关联,最近的研究发现PPII比预期的更为常见。此外,有人认为它们可能具有重要的功能作用,特别是在蛋白质-蛋白质或蛋白质-核酸的相互作用及识别过程中。与PPII构象相关的残基占总残基的近5%,但缺乏PPII的归属方法阻碍了对它们的系统分析。这篇简短的综述将介绍PPII领域的现有知识和最新研究。第一步,介绍能够确定PPII的不同方法。第二步,通过三个案例强调最近在PPII结构和功能分析方面展现新视角的研究:(1)蛋白质结构中的PPII。例如,已报道了采用全反式多聚脯氨酸II(PPII)螺旋的寡聚脯氨酸的首个晶体结构;(2)PPII在不同疾病和药物设计中的作用;(3)PPII研究在蛋白质动力学方面的有趣拓展。例如,PPII常与无序区域分析相关,对性腺功能减退中潜在PPII螺旋的精确分析显示,在患者突变体中出现了意外的PPII形成,而在野生型KISSR1蛋白中未观察到这种情况。