Suppr超能文献

基于统一典型相关分析的框架,用于消除 EEG/fMRI 同步记录中的梯度伪影和 EEG 信号中行走记录的运动伪影。

A unified canonical correlation analysis-based framework for removing gradient artifact in concurrent EEG/fMRI recording and motion artifact in walking recording from EEG signal.

机构信息

Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, Singapore, Singapore.

Center of Cognitive Neuroscience, Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, Singapore, Singapore.

出版信息

Med Biol Eng Comput. 2017 Sep;55(9):1669-1681. doi: 10.1007/s11517-017-1620-3. Epub 2017 Feb 9.

Abstract

Artifacts cause distortion and fuzziness in electroencephalographic (EEG) signal and hamper EEG analysis, so it is necessary to remove them prior to the analysis. Particularly, artifact removal becomes a critical issue in experimental protocols with significant inherent recording noise, such as mobile EEG recordings and concurrent EEG-fMRI acquisitions. In this paper, we proposed a unified framework based on canonical correlation analysis for artifact removal. Raw signals were reorganized to construct a pair of matrices, based on which sources were sought through maximizing autocorrelation. Those sources related to artifacts were then removed by setting them as zeros, and the remaining sources were used to reconstruct artifact-free EEG. Both simulated and real recorded data were utilized to assess the proposed framework. Qualitative and quantitative results showed that the proposed framework was effective to remove artifacts from EEG signal. Specifically, the proposed method outperformed independent component analysis method for mitigating motion-related artifacts and had advantages for removing gradient artifact compared to the classical method (average artifacts subtraction) and the state-of-the-art method (optimal basis set) in terms of the combination of performance and computational complexity.

摘要

伪迹会导致脑电图 (EEG) 信号失真和模糊,从而影响 EEG 分析,因此在分析之前有必要将其去除。特别是在具有显著固有记录噪声的实验方案中,例如移动 EEG 记录和同时进行的 EEG-fMRI 采集,伪迹去除成为一个关键问题。在本文中,我们提出了一种基于典型相关分析的统一框架用于伪迹去除。原始信号被重新组织以构建一对矩阵,基于该矩阵通过最大化自相关来寻找源。然后通过将那些与伪迹相关的源设置为零来去除这些源,剩余的源用于重建无伪迹的 EEG。利用模拟和实际记录的数据来评估所提出的框架。定性和定量结果表明,所提出的框架能够有效地从 EEG 信号中去除伪迹。具体来说,与独立成分分析方法相比,该方法在减轻与运动相关的伪迹方面表现更优,并且在性能和计算复杂度的组合方面,与经典方法(平均伪迹减法)和最先进的方法(最优基集)相比,在去除梯度伪迹方面具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验