Suppr超能文献

使用机器学习方法整合代谢组学、脂质组学和临床数据。

Integration of metabolomics, lipidomics and clinical data using a machine learning method.

作者信息

Acharjee Animesh, Ament Zsuzsanna, West James A, Stanley Elizabeth, Griffin Julian L

机构信息

Medical Research Council, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge, CB1 9NL, UK.

The Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.

出版信息

BMC Bioinformatics. 2016 Nov 22;17(Suppl 15):440. doi: 10.1186/s12859-016-1292-2.

Abstract

BACKGROUND

The recent pandemic of obesity and the metabolic syndrome (MetS) has led to the realisation that new drug targets are needed to either reduce obesity or the subsequent pathophysiological consequences associated with excess weight gain. Certain nuclear hormone receptors (NRs) play a pivotal role in lipid and carbohydrate metabolism and have been highlighted as potential treatments for obesity. This realisation started a search for NR agonists in order to understand and successfully treat MetS and associated conditions such as insulin resistance, dyslipidaemia, hypertension, hypertriglyceridemia, obesity and cardiovascular disease. The most studied NRs for treating metabolic diseases are the peroxisome proliferator-activated receptors (PPARs), PPAR-α, PPAR-γ, and PPAR-δ. However, prolonged PPAR treatment in animal models has led to adverse side effects including increased risk of a number of cancers, but how these receptors change metabolism long term in terms of pathology, despite many beneficial effects shorter term, is not fully understood. In the current study, changes in male Sprague Dawley rat liver caused by dietary treatment with a PPAR-pan (PPAR-α, -γ, and -δ) agonist were profiled by classical toxicology (clinical chemistry) and high throughput metabolomics and lipidomics approaches using mass spectrometry.

RESULTS

In order to integrate an extensive set of nine different multivariate metabolic and lipidomics datasets with classical toxicological parameters we developed a hypotheses free, data driven machine learning approach. From the data analysis, we examined how the nine datasets were able to model dose and clinical chemistry results, with the different datasets having very different information content.

CONCLUSIONS

We found lipidomics (Direct Infusion-Mass Spectrometry) data the most predictive for different dose responses. In addition, associations with the metabolic and lipidomic data with aspartate amino transaminase (AST), a hepatic leakage enzyme to assess organ damage, and albumin, indicative of altered liver synthetic function, were established. Furthermore, by establishing correlations and network connections between eicosanoids, phospholipids and triacylglycerols, we provide evidence that these lipids function as a key link between inflammatory processes and intermediary metabolism.

摘要

背景

近期肥胖症和代谢综合征(MetS)的流行促使人们认识到,需要新的药物靶点来减轻肥胖或与体重过度增加相关的后续病理生理后果。某些核激素受体(NRs)在脂质和碳水化合物代谢中起关键作用,并已被视为肥胖症的潜在治疗靶点。这一认识引发了对NR激动剂的研究,以了解并成功治疗MetS及相关病症,如胰岛素抵抗、血脂异常、高血压、高甘油三酯血症、肥胖症和心血管疾病。用于治疗代谢性疾病研究最多的NRs是过氧化物酶体增殖物激活受体(PPARs),即PPAR-α、PPAR-γ和PPAR-δ。然而,在动物模型中长时间使用PPAR治疗会导致不良副作用,包括多种癌症风险增加,但尽管短期内有许多有益作用,这些受体在病理方面如何长期改变代谢仍未完全了解。在本研究中,通过经典毒理学(临床化学)以及使用质谱的高通量代谢组学和脂质组学方法,对用PPAR泛激动剂(PPAR-α、-γ和-δ)进行饮食治疗引起的雄性斯普拉格-道利大鼠肝脏变化进行了分析。

结果

为了将九组不同的多元代谢和脂质组学数据集与经典毒理学参数整合起来,我们开发了一种无假设、数据驱动的机器学习方法。通过数据分析,我们研究了这九组数据集如何能够模拟剂量和临床化学结果,不同数据集具有非常不同的信息内容。

结论

我们发现脂质组学(直接注入质谱法)数据对不同剂量反应的预测性最强。此外,还建立了代谢组学和脂质组学数据与天冬氨酸氨基转移酶(AST,一种用于评估器官损伤的肝脏泄漏酶)以及白蛋白(指示肝脏合成功能改变)之间的关联。此外,通过建立类二十烷酸、磷脂和三酰甘油之间的相关性和网络连接,我们提供了证据表明这些脂质是炎症过程和中间代谢之间的关键联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f7b/5133491/37b89b5f8367/12859_2016_1292_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验