Suppr超能文献

使用低阶偏相关进行生物网络推断。

Biological network inference using low order partial correlation.

作者信息

Zuo Yiming, Yu Guoqiang, Tadesse Mahlet G, Ressom Habtom W

机构信息

Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA; Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA.

Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA.

出版信息

Methods. 2014 Oct 1;69(3):266-73. doi: 10.1016/j.ymeth.2014.06.010. Epub 2014 Jul 5.

Abstract

Biological network inference is a major challenge in systems biology. Traditional correlation-based network analysis results in too many spurious edges since correlation cannot distinguish between direct and indirect associations. To address this issue, Gaussian graphical models (GGM) were proposed and have been widely used. Though they can significantly reduce the number of spurious edges, GGM are insufficient to uncover a network structure faithfully due to the fact that they only consider the full order partial correlation. Moreover, when the number of samples is smaller than the number of variables, further technique based on sparse regularization needs to be incorporated into GGM to solve the singular covariance inversion problem. In this paper, we propose an efficient and mathematically solid algorithm that infers biological networks by computing low order partial correlation (LOPC) up to the second order. The bias introduced by the low order constraint is minimal compared to the more reliable approximation of the network structure achieved. In addition, the algorithm is suitable for a dataset with small sample size but large number of variables. Simulation results show that LOPC yields far less spurious edges and works well under various conditions commonly seen in practice. The application to a real metabolomics dataset further validates the performance of LOPC and suggests its potential power in detecting novel biomarkers for complex disease.

摘要

生物网络推断是系统生物学中的一项重大挑战。传统的基于相关性的网络分析会产生过多的虚假边,因为相关性无法区分直接关联和间接关联。为了解决这个问题,高斯图形模型(GGM)被提出并得到了广泛应用。尽管它们可以显著减少虚假边的数量,但由于仅考虑全阶偏相关性,GGM不足以如实地揭示网络结构。此外,当样本数量小于变量数量时,需要将基于稀疏正则化的进一步技术纳入GGM来解决奇异协方差逆问题。在本文中,我们提出了一种高效且数学上可靠的算法,该算法通过计算高达二阶的低阶偏相关性(LOPC)来推断生物网络。与所实现的更可靠的网络结构近似相比,低阶约束引入的偏差最小。此外,该算法适用于样本量小但变量数量多的数据集。模拟结果表明,LOPC产生的虚假边要少得多,并且在实际中常见的各种条件下都能很好地工作。将其应用于真实的代谢组学数据集进一步验证了LOPC的性能,并表明其在检测复杂疾病新生物标志物方面的潜在能力。

相似文献

1
Biological network inference using low order partial correlation.使用低阶偏相关进行生物网络推断。
Methods. 2014 Oct 1;69(3):266-73. doi: 10.1016/j.ymeth.2014.06.010. Epub 2014 Jul 5.

引用本文的文献

3
Data analysis methods for defining biomarkers from omics data.用于从组学数据中定义生物标志物的数据分析方法。
Anal Bioanal Chem. 2022 Jan;414(1):235-250. doi: 10.1007/s00216-021-03813-7. Epub 2021 Dec 24.
8
INDEED: R package for network based differential expression analysis.INDEED:用于基于网络的差异表达分析的R包。
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:2709-2712. doi: 10.1109/BIBM.2018.8621426. Epub 2019 Jan 24.

本文引用的文献

3
Sparse inverse covariance estimation with the graphical lasso.使用图模型选择法进行稀疏逆协方差估计。
Biostatistics. 2008 Jul;9(3):432-41. doi: 10.1093/biostatistics/kxm045. Epub 2007 Dec 12.
4
Network motifs: theory and experimental approaches.网络基序:理论与实验方法
Nat Rev Genet. 2007 Jun;8(6):450-61. doi: 10.1038/nrg2102.
6
Low-order conditional independence graphs for inferring genetic networks.用于推断遗传网络的低阶条件独立图。
Stat Appl Genet Mol Biol. 2006;5:Article1. doi: 10.2202/1544-6115.1170. Epub 2006 Jan 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验