Tomše Petra, Jensterle Luka, Rep Sebastijan, Grmek Marko, Zaletel Katja, Eidelberg David, Dhawan Vijay, Ma Yilong, Trošt Maja
Department of Nuclear Medicine, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia.
Center for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA.
Phys Med. 2017 Sep;41:129-135. doi: 10.1016/j.ejmp.2017.01.018. Epub 2017 Feb 7.
To evaluate the reproducibility of the expression of Parkinson's Disease Related Pattern (PDRP) across multiple sets of 18F-FDG-PET brain images reconstructed with different reconstruction algorithms.
18F-FDG-PET brain imaging was performed in two independent cohorts of Parkinson's disease (PD) patients and normal controls (NC). Slovenian cohort (20 PD patients, 20 NC) was scanned with Siemens Biograph mCT camera and reconstructed using FBP, FBP+TOF, OSEM, OSEM+TOF, OSEM+PSF and OSEM+PSF+TOF. American Cohort (20 PD patients, 7 NC) was scanned with GE Advance camera and reconstructed using 3DRP, FORE-FBP and FORE-Iterative. Expressions of two previously-validated PDRP patterns (PDRP-Slovenia and PDRP-USA) were calculated. We compared the ability of PDRP to discriminate PD patients from NC, differences and correlation between the corresponding subject scores and ROC analysis results across the different reconstruction algorithms.
The expression of PDRP-Slovenia and PDRP-USA networks was significantly elevated in PD patients compared to NC (p<0.0001), regardless of reconstruction algorithms. PDRP expression strongly correlated between all studied algorithms and the reference algorithm (r⩾0.993, p<0.0001). Average differences in the PDRP expression among different algorithms varied within 0.73 and 0.08 of the reference value for PDRP-Slovenia and PDRP-USA, respectively. ROC analysis confirmed high similarity in sensitivity, specificity and AUC among all studied reconstruction algorithms.
These results show that the expression of PDRP is reproducible across a variety of reconstruction algorithms of 18F-FDG-PET brain images. PDRP is capable of providing a robust metabolic biomarker of PD for multicenter 18F-FDG-PET images acquired in the context of differential diagnosis or clinical trials.
评估帕金森病相关模式(PDRP)在多组使用不同重建算法重建的18F-FDG-PET脑图像中的表达可重复性。
在两个独立的帕金森病(PD)患者和正常对照(NC)队列中进行18F-FDG-PET脑成像。斯洛文尼亚队列(20例PD患者,20例NC)使用西门子Biograph mCT相机进行扫描,并使用FBP、FBP+TOF、OSEM、OSEM+TOF、OSEM+PSF和OSEM+PSF+TOF进行重建。美国队列(20例PD患者,7例NC)使用GE Advance相机进行扫描,并使用3DRP、FORE-FBP和FORE-Iterative进行重建。计算两种先前验证的PDRP模式(PDRP-斯洛文尼亚和PDRP-美国)的表达。我们比较了PDRP区分PD患者和NC的能力、相应受试者分数之间的差异和相关性,以及不同重建算法的ROC分析结果。
与NC相比,无论重建算法如何,PD患者中PDRP-斯洛文尼亚和PDRP-美国网络的表达均显著升高(p<0.0001)。所有研究算法与参考算法之间的PDRP表达高度相关(r⩾0.993,p<0.0001)。不同算法之间PDRP表达的平均差异分别在PDRP-斯洛文尼亚和PDRP-美国参考值的0.73和0.08范围内变化。ROC分析证实所有研究的重建算法在敏感性、特异性和AUC方面具有高度相似性。
这些结果表明,PDRP的表达在18F-FDG-PET脑图像的各种重建算法中具有可重复性。PDRP能够为在鉴别诊断或临床试验背景下获取的多中心18F-FDG-PET图像提供强大的PD代谢生物标志物。