Suppr超能文献

帕金森病的鉴别诊断:使用模式分析的代谢成像研究。

Differential diagnosis of parkinsonism: a metabolic imaging study using pattern analysis.

机构信息

Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA.

出版信息

Lancet Neurol. 2010 Feb;9(2):149-58. doi: 10.1016/S1474-4422(10)70002-8. Epub 2010 Jan 8.

Abstract

BACKGROUND

Idiopathic Parkinson's disease can present with symptoms similar to those of multiple system atrophy or progressive supranuclear palsy. We aimed to assess whether metabolic brain imaging combined with spatial covariance analysis could accurately discriminate patients with parkinsonism who had different underlying disorders.

METHODS

Between January, 1998, and December, 2006, patients from the New York area who had parkinsonian features but uncertain clinical diagnosis had fluorine-18-labelled-fluorodeoxyglucose-PET at The Feinstein Institute for Medical Research. We developed an automated image-based classification procedure to differentiate individual patients with idiopathic Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. For each patient, the likelihood of having each of the three diseases was calculated by use of multiple disease-related patterns with logistic regression and leave-one-out cross-validation. Each patient was classified according to criteria defined by receiver-operating-characteristic analysis. After imaging, patients were assessed by blinded movement disorders specialists for a mean of 2.6 years before a final clinical diagnosis was made. The accuracy of the initial image-based classification was assessed by comparison with the final clinical diagnosis.

FINDINGS

167 patients were assessed. Image-based classification for idiopathic Parkinson's disease had 84% sensitivity, 97% specificity, 98% positive predictive value (PPV), and 82% negative predictive value (NPV). Imaging classifications were also accurate for multiple system atrophy (85% sensitivity, 96% specificity, 97% PPV, and 83% NPV) and progressive supranuclear palsy (88% sensitivity, 94% specificity, 91% PPV, and 92% NPV).

INTERPRETATION

Automated image-based classification has high specificity in distinguishing between parkinsonian disorders and could help in selecting treatment for early-stage patients and identifying participants for clinical trials.

FUNDING

National Institutes of Health and General Clinical Research Center at The Feinstein Institute for Medical Research.

摘要

背景

特发性帕金森病的症状可能与多系统萎缩或进行性核上性麻痹相似。我们旨在评估代谢性脑成像结合空间协方差分析是否能准确区分具有不同潜在疾病的帕金森病患者。

方法

1998 年 1 月至 2006 年 12 月期间,来自纽约地区的具有帕金森病特征但临床诊断不确定的患者在 Feinstein 医学研究所进行了氟-18 标记氟脱氧葡萄糖-PET。我们开发了一种自动基于图像的分类程序,以区分特发性帕金森病、多系统萎缩和进行性核上性麻痹的个体患者。对于每个患者,使用多个与疾病相关的模式,通过逻辑回归和留一法交叉验证,计算其患有三种疾病的可能性。根据接收器操作特征分析定义的标准对每个患者进行分类。成像后,由盲法运动障碍专家对患者进行评估,平均随访 2.6 年,然后得出最终临床诊断。通过与最终临床诊断比较,评估初始基于图像的分类的准确性。

结果

评估了 167 例患者。特发性帕金森病的基于图像的分类具有 84%的敏感性、97%的特异性、98%的阳性预测值(PPV)和 82%的阴性预测值(NPV)。多系统萎缩(85%的敏感性、96%的特异性、97%的 PPV 和 83%的 NPV)和进行性核上性麻痹(88%的敏感性、94%的特异性、91%的 PPV 和 92%的 NPV)的成像分类也准确。

解释

自动基于图像的分类在区分帕金森病障碍方面具有很高的特异性,可帮助选择早期患者的治疗方法,并识别临床试验的参与者。

资金来源

美国国立卫生研究院和 Feinstein 医学研究所综合临床研究中心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5301/4617666/a475b180ef66/nihms728459f1.jpg

相似文献

引用本文的文献

4
The role of neuro-imaging in multiple system atrophy.神经影像学在多系统萎缩中的作用。
J Neural Transm (Vienna). 2025 Jul 12. doi: 10.1007/s00702-025-02964-6.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验