Suppr超能文献

车辆中的增强现实警告:模态和特异性对有效性的影响。

Augmented reality warnings in vehicles: Effects of modality and specificity on effectiveness.

作者信息

Schwarz Felix, Fastenmeier Wolfgang

机构信息

Psychologische Hochschule Berlin, Theresienstr. 48, D-80333 München, Germany.

Psychologische Hochschule Berlin, Hochkönigstr. 6, D-81825 München, Germany.

出版信息

Accid Anal Prev. 2017 Apr;101:55-66. doi: 10.1016/j.aap.2017.01.019. Epub 2017 Feb 9.

Abstract

In the future, vehicles will be able to warn drivers of hidden dangers before they are visible. Specific warning information about these hazards could improve drivers' reactions and the warning effectiveness, but could also impair them, for example, by additional cognitive-processing costs. In a driving simulator study with 88 participants, we investigated the effects of modality (auditory vs. visual) and specificity (low vs. high) on warning effectiveness. For the specific warnings, we used augmented reality as an advanced technology to display the additional auditory or visual warning information. Part one of the study concentrates on the effectiveness of necessary warnings and part two on the drivers' compliance despite false alarms. For the first warning scenario, we found several positive main effects of specificity. However, subsequent effects of specificity were moderated by the modality of the warnings. The specific visual warnings were observed to have advantages over the three other warning designs concerning gaze and braking reaction times, passing speeds and collision rates. Besides the true alarms, braking reaction times as well as subjective evaluation after these warnings were still improved despite false alarms. The specific auditory warnings were revealed to have only a few advantages, but also several disadvantages. The results further indicate that the exact coding of additional information, beyond its mere amount and modality, plays an important role. Moreover, the observed advantages of the specific visual warnings highlight the potential benefit of augmented reality coding to improve future collision warnings.

摘要

未来,车辆将能够在隐藏危险变得可见之前就向驾驶员发出警告。关于这些危险的具体警告信息可能会改善驾驶员的反应和警告效果,但也可能会产生不利影响,例如增加认知处理成本。在一项有88名参与者的驾驶模拟器研究中,我们调查了模态(听觉与视觉)和特异性(低与高)对警告效果的影响。对于具体警告,我们使用增强现实作为一种先进技术来显示额外的听觉或视觉警告信息。研究的第一部分专注于必要警告的有效性,第二部分专注于尽管有误报但驾驶员的遵守情况。对于第一个警告场景,我们发现了特异性的几个积极主要影响。然而,特异性的后续影响受到警告模态的调节。在注视和制动反应时间、通过速度和碰撞率方面,具体视觉警告被观察到比其他三种警告设计具有优势。除了真实警报外,尽管有误报,但这些警告后的制动反应时间以及主观评价仍有所改善。具体听觉警告被发现只有一些优点,但也有几个缺点。结果进一步表明,除了信息的数量和模态之外,额外信息的确切编码也起着重要作用。此外,具体视觉警告所观察到的优势突出了增强现实编码在改善未来碰撞警告方面的潜在益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验