Lentz B R, Burgess S W
Department of Biochemistry, University of North Carolina, Chapel Hill 27599-7260.
Biophys J. 1989 Oct;56(4):723-33. doi: 10.1016/S0006-3495(89)82720-1.
We have investigated the reason for the sensitivity of the fluorescence excited-state lifetime of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its phospholipid derivatives, 1-palmitoyl-2-[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl)carbonyl)-3-sn-phosphatidylcholine (DPHpPC) and 1-palmitoyl-2-[2-[4-(6-phenyl-trans-1,3,5- hexatrienyl)phenyl]ethyl)carbonyl)-3-sn-phosphatidic acid (DPHpPA), to the concentration of these probes in dipalmitoylphosphatidylcholine (DPPC) multilamellar membranes (Barrow, D. A., and B. R. Lentz, 1985. Biophys. J. 48:221-234; Parente, R. A., and B. R. Lentz. 1985. Biochemistry. 24:6178-6185). We have interpreted self-quenching data, excitation and emission spectra, and phase and modulation lifetime data in terms of a model that envisions dimerization of these probes in a membrane bilayer. It is proposed that dimerization alters the symmetry of the DPH excited state so as to allow more rapid decay via the normally symmetry-disallowed route from the 1Ag* state. Global analysis of fluorescence phase shift and modulation ratio data for DPHpPC in terms of the dimerization model provided a good fit of these data as a function of both modulation frequency and probe concentration. Global analysis of a similar set of data for the charged phosphatide DPHpPA predicted that this probe was much less prone to dimerize than was the uncharged DPHpPC. This physically reasonable result provides support for the assumptions made in the development of our model. We conclude that the dimerization model allows rationalization of many of the anomalous photophysical properties of DPH and its derivatives in membranes.
我们研究了1,6 - 二苯基 - 1,3,5 - 己三烯(DPH)及其磷脂衍生物1 - 棕榈酰 - 2 - [2 - [4 - (6 - 苯基 - 反式 - 1,3,5 - 己三烯基)phenyl]乙基)羰基]-3 - 磷酸胆碱(DPHpPC)和1 - 棕榈酰 - 2 - [2 - [4 - (6 - 苯基 - 反式 - 1,3,5 - 己三烯基)phenyl]乙基)羰基]-3 - 磷酸甘油酸(DPHpPA)在二棕榈酰磷脂酰胆碱(DPPC)多层膜中荧光激发态寿命对这些探针浓度敏感的原因(巴罗,D. A.,和B. R. 伦茨,1985年。《生物物理杂志》48:221 - 234;帕伦特,R. A.,和B. R. 伦茨。1985年。《生物化学》24:6178 - 6185)。我们根据一个设想这些探针在膜双层中发生二聚化的模型来解释自猝灭数据、激发和发射光谱以及相位和调制寿命数据。有人提出二聚化改变了DPH激发态的对称性,从而允许通过通常因对称性禁阻而不能发生的从1Ag*态的途径更快地衰减。根据二聚化模型对DPHpPC的荧光相移和调制比数据进行全局分析,很好地拟合了这些数据作为调制频率和探针浓度的函数。对带电荷的磷脂DPHpPA的一组类似数据进行全局分析预测该探针比不带电荷的DPHpPC更不容易发生二聚化。这个符合物理常理的结果为我们模型建立过程中所做的假设提供了支持。我们得出结论,二聚化模型能够合理地解释DPH及其衍生物在膜中的许多异常光物理性质。