Suppr超能文献

高通量微流控与小角 X 射线散射联用研究溶液中蛋白质结晶。

Coupling High Throughput Microfluidics and Small-Angle X-ray Scattering to Study Protein Crystallization from Solution.

机构信息

Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS , 4 allée Emile Monso, 31432 Toulouse, France.

European Molecular Biology Laboratory , 71 avenue des Martyrs, 38042 Grenoble, France.

出版信息

Anal Chem. 2017 Feb 21;89(4):2282-2287. doi: 10.1021/acs.analchem.6b03492. Epub 2017 Feb 8.

Abstract

In this work, we propose the combination of small-angle X-ray scattering (SAXS) and high throughput, droplet based microfluidics as a powerful tool to investigate macromolecular interactions, directly related to protein solubility. For this purpose, a robust and low cost microfluidic platform was fabricated for achieving the mixing of proteins, crystallization reagents, and buffer in nanoliter volumes and the subsequent generation of nanodroplets by means of a two phase flow. The protein samples are compartmentalized inside droplets, each one acting as an isolated microreactor. Hence their physicochemical conditions (concentration, pH, etc.) can be finely tuned without cross-contamination, allowing the screening of a huge number of saturation conditions with a small amount of biological material. The droplet flow is synchronized with synchrotron radiation SAXS measurements to probe protein interactions while minimizing radiation damage. To this end, the experimental setup was tested with rasburicase (known to be very sensitive to denaturation), proving the structural stability of the protein in the droplets and the absence of radiation damage. Subsequently weak interaction variations as a function of protein saturation was studied for the model protein lysozime. The second virial coefficients (A2) were determined from the X-ray structure factors extrapolated to the origin. A2 obtained values were found to be in good agreement with data previously reported in literature but using only a few milligrams of protein. The experimental results presented here highlight the interest and convenience of using this methodology as a promising and potential candidate for studying protein interactions for the construction of phase diagrams.

摘要

在这项工作中,我们提出将小角 X 射线散射(SAXS)和高通量、基于液滴的微流控技术相结合,作为一种强大的工具来研究与蛋白质溶解度直接相关的大分子相互作用。为此,我们构建了一个强大且低成本的微流控平台,用于在纳升级别混合蛋白质、结晶试剂和缓冲液,并通过两相流生成纳米液滴。蛋白质样品被分隔在液滴内,每个液滴充当一个隔离的微反应器。因此,它们的物理化学条件(浓度、pH 值等)可以在不发生交叉污染的情况下进行微调,允许用少量生物材料筛选大量的饱和条件。液滴流与同步加速器辐射 SAXS 测量同步,以在最小化辐射损伤的情况下探测蛋白质相互作用。为此,我们用 rasburicase(已知对变性非常敏感)对实验装置进行了测试,证明了蛋白质在液滴中的结构稳定性和没有辐射损伤。随后,我们研究了模型蛋白溶菌酶作为功能饱和的弱相互作用变化。通过外推到原点的 X 射线结构因子确定第二维里系数(A2)。从实验中得到的 A2 值与文献中之前报道的值非常吻合,但只使用了几毫克的蛋白质。这里呈现的实验结果强调了这种方法的兴趣和便利性,它是一种很有前途的潜在候选方法,可用于研究蛋白质相互作用以构建相图。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验