Suppr超能文献

4 年级至 9 年级语言能力受损的特定学习障碍的读写成就的序列预测。

Sequential Prediction of Literacy Achievement for Specific Learning Disabilities Contrasting in Impaired Levels of Language in Grades 4 to 9.

机构信息

1 University of Washington, Seattle, USA.

出版信息

J Learn Disabil. 2018 Mar/Apr;51(2):137-157. doi: 10.1177/0022219417691048. Epub 2017 Feb 15.

Abstract

Sequential regression was used to evaluate whether language-related working memory components uniquely predict reading and writing achievement beyond cognitive-linguistic translation for students in Grades 4 through 9 ( N = 103) with specific learning disabilities (SLDs) in subword handwriting (dysgraphia, n = 25), word reading and spelling (dyslexia, n = 60), or oral and written language (oral and written language learning disabilities, n = 18). That is, SLDs are defined on the basis of cascading level of language impairment (subword, word, and syntax/text). A five-block regression model sequentially predicted literacy achievement from cognitive-linguistic translation (Block 1); working memory components for word-form coding (Block 2), phonological and orthographic loops (Block 3), and supervisory focused or switching attention (Block 4); and SLD groups (Block 5). Results showed that cognitive-linguistic translation explained an average of 27% and 15% of the variance in reading and writing achievement, respectively, but working memory components explained an additional 39% and 27% of variance. Orthographic word-form coding uniquely predicted nearly every measure, whereas attention switching uniquely predicted only reading. Finally, differences in reading and writing persisted between dyslexia and dysgraphia, with dysgraphia higher, even after controlling for Block 1 to 4 predictors. Differences in literacy achievement between students with dyslexia and oral and written language learning disabilities were largely explained by the Block 1 predictors. Applications to identifying and teaching students with these SLDs are discussed.

摘要

采用序列回归评估对于 4 年级至 9 年级(N=103)具有特定学习障碍(SLD)的学生,语言相关工作记忆成分是否在认知语言翻译之外,对阅读和写作成绩具有独特的预测作用,这些学生的 SLD 表现为亚词书写障碍(失写症,n=25)、单词阅读和拼写障碍(失读症,n=60)或口语和书面语言障碍(口语和书面语言学习障碍,n=18)。即,SLD 是基于语言损伤的级联水平(亚词、词和句法/文本)来定义的。一个五块回归模型,从认知语言翻译(第 1 块)开始,依次预测读写成绩;对词形编码(第 2 块)、语音和正字法循环(第 3 块)以及监督集中或切换注意力(第 4 块)的工作记忆成分;以及 SLD 组(第 5 块)。结果表明,认知语言翻译分别解释了阅读和写作成绩的 27%和 15%的方差,但工作记忆成分分别解释了 39%和 27%的额外方差。正字法词形编码可单独预测几乎每一项指标,而注意力切换仅可单独预测阅读。最后,失读症和失写症之间的阅读和写作差异仍然存在,即使在控制第 1 至 4 个预测块后,失写症的差异仍然较高。失读症和口语和书面语言学习障碍学生之间的读写成绩差异在很大程度上可以用第 1 个预测块来解释。讨论了这些 SLD 患者的识别和教学应用。

相似文献

1
3
Differential Diagnosis of Dysgraphia, Dyslexia, and OWL LD: Behavioral and Neuroimaging Evidence.
Read Writ. 2015 Oct;28(8):1119-1153. doi: 10.1007/s11145-015-9565-0.
9
Phonological dyslexia and dysgraphia: cognitive mechanisms and neural substrates.
Cortex. 2009 May;45(5):575-91. doi: 10.1016/j.cortex.2008.04.006. Epub 2008 Jun 5.

引用本文的文献

2
Behavioral and brain evidence for language by ear, mouth, eye, and hand and motor skills in literacy learning.
Int J Sch Educ Psychol. 2019;7(Suppl 1):182-200. doi: 10.1080/21683603.2018.1458357. Epub 2018 Aug 15.
6
Why Children With Dyslexia Struggle With Writing and How to Help Them.
Lang Speech Hear Serv Sch. 2018 Oct 24;49(4):843-863. doi: 10.1044/2018_LSHSS-DYSLC-18-0024.
7
Effective Instruction for Persisting Dyslexia in Upper Grades: Adding Hope Stories and Computer Coding to Explicit Literacy Instruction.
Educ Inf Technol (Dordr). 2018 May;23(3):1043-4068. doi: 10.1007/s10639-017-9647-5. Epub 2017 Sep 20.

本文引用的文献

3
Brain connectivity associated with cascading levels of language.
J Syst Integr Neurosci. 2016;2(3). doi: 10.15761/JSIN.1000139. Epub 2016 Nov 10.
6
Gray Matter Features of Reading Disability: A Combined Meta-Analytic and Direct Analysis Approach(1,2,3,4).
eNeuro. 2016 Jan 23;3(1). doi: 10.1523/ENEURO.0103-15.2015. eCollection 2016 Jan-Feb.
8
Differential Diagnosis of Dysgraphia, Dyslexia, and OWL LD: Behavioral and Neuroimaging Evidence.
Read Writ. 2015 Oct;28(8):1119-1153. doi: 10.1007/s11145-015-9565-0.
10
Specific learning disorder: prevalence and gender differences.
PLoS One. 2014 Jul 29;9(7):e103537. doi: 10.1371/journal.pone.0103537. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验