Llères David, Bailly Aymeric P, Perrin Aurélien, Norman David G, Xirodimas Dimitris P, Feil Robert
Institute of Molecular Genetics (IGMM), CNRS, UMR-5535, 34293 Montpellier, France; University of Montpellier, 34090 Montpellier, France.
University of Montpellier, 34090 Montpellier, France; Cell Biology Research Center of Montpellier, CNRS, UMR-5237, 34293 Montpellier, France.
Cell Rep. 2017 Feb 14;18(7):1791-1803. doi: 10.1016/j.celrep.2017.01.043.
How metazoan genomes are structured at the nanoscale in living cells and tissues remains unknown. Here, we adapted a quantitative FRET (Förster resonance energy transfer)-based fluorescence lifetime imaging microscopy (FLIM) approach to assay nanoscale chromatin compaction in living organisms. Caenorhabditis elegans was chosen as a model system. By measuring FRET between histone-tagged fluorescent proteins, we visualized distinct chromosomal regions and quantified the different levels of nanoscale compaction in meiotic cells. Using RNAi and repetitive extrachromosomal array approaches, we defined the heterochromatin state and showed that its architecture presents a nanoscale-compacted organization controlled by Heterochromatin Protein-1 (HP1) and SETDB1 H3-lysine-9 methyltransferase homologs in vivo. Next, we functionally explored condensin complexes. We found that condensin I and condensin II are essential for heterochromatin compaction and that condensin I additionally controls lowly compacted regions. Our data show that, in living animals, nanoscale chromatin compaction is controlled not only by histone modifiers and readers but also by condensin complexes.
后生动物基因组在活细胞和组织中是如何在纳米尺度上构建的仍然未知。在这里,我们采用了一种基于定量荧光共振能量转移(FRET)的荧光寿命成像显微镜(FLIM)方法来检测活生物体中纳米尺度的染色质压缩情况。秀丽隐杆线虫被选为模型系统。通过测量组蛋白标记的荧光蛋白之间的FRET,我们可视化了不同的染色体区域,并量化了减数分裂细胞中纳米尺度压缩的不同水平。使用RNA干扰和重复的染色体外阵列方法,我们定义了异染色质状态,并表明其结构呈现出一种在体内由异染色质蛋白1(HP1)和SETDB1 H3-赖氨酸-9甲基转移酶同源物控制的纳米尺度压缩组织。接下来,我们对凝聚素复合物进行了功能探索。我们发现凝聚素I和凝聚素II对于异染色质压缩至关重要,并且凝聚素I还额外控制低度压缩区域。我们的数据表明,在活体动物中,纳米尺度的染色质压缩不仅受组蛋白修饰因子和读取器控制,还受凝聚素复合物控制。