Suppr超能文献

荧光寿命相分析实现三种探针的定量多重分子成像

Phasor Analysis of Fluorescence Lifetime Enables Quantitative Multiplexed Molecular Imaging of Three Probes.

机构信息

Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States.

Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States.

出版信息

Anal Chem. 2022 Oct 18;94(41):14185-14194. doi: 10.1021/acs.analchem.2c02149. Epub 2022 Oct 3.

Abstract

The excited-state lifetime is an intrinsic property of fluorescent molecules that can be leveraged for multiplexed imaging. An advantage of fluorescence lifetime-based multiplexing is that signals from multiple probes can be gathered simultaneously, whereas traditional spectral fluorescence imaging typically requires multiple images at different excitation and emission wavelengths. Additionally, lifetime and spectra could both be utilized to expand the multiplexing capacity of fluorescence. However, resolving exogenous molecular probes based exclusively on the fluorescence lifetime has been limited by technical challenges in analyzing lifetime data. The phasor approach to lifetime analysis offers a simple, graphical solution that has increasingly been used to assess endogenous cellular autofluorescence to quantify metabolic factors. In this study, we employed the phasor analysis of FLIM to quantitatively resolve three exogenous, antibody-targeted fluorescent probes with similar spectral properties based on lifetime information alone. First, we demonstrated that three biomarkers that were spatially restricted to the cell membrane, cytosol, or nucleus could be accurately distinguished using FLIM and phasor analysis. Next, we successfully resolved and quantified three probes that were all targeted to cell surface biomarkers. Finally, we demonstrated that lifetime-based quantitation accuracy can be improved through intensity matching of various probe-biomarker combinations, which will expand the utility of this technique. Importantly, we reconstructed images for each individual probe, as well as an overlay of all three probes, from a single FLIM image. Our results demonstrate that FLIM and phasor analysis can be leveraged as a powerful tool for simultaneous detection of multiple biomarkers with high sensitivity and accuracy.

摘要

荧光寿命是荧光分子的固有特性,可用于多重成像。基于荧光寿命的多重成像的一个优点是可以同时收集来自多个探针的信号,而传统的光谱荧光成像通常需要在不同的激发和发射波长下拍摄多个图像。此外,寿命和光谱都可以用于扩展荧光的多重化能力。然而,仅基于荧光寿命来解析外源性分子探针受到分析寿命数据的技术挑战的限制。相位向量方法提供了一种简单的图形解决方案,越来越多地用于评估内源性细胞自发荧光以量化代谢因素。在这项研究中,我们使用 FLIM 的相位向量分析来仅基于寿命信息定量解析具有相似光谱特性的三种外源性抗体靶向荧光探针。首先,我们证明了可以使用 FLIM 和相位向量分析准确区分空间上局限于细胞膜、细胞质或细胞核的三种生物标志物。接下来,我们成功解析并量化了三种均靶向细胞表面生物标志物的探针。最后,我们证明了通过各种探针-生物标志物组合的强度匹配可以提高基于寿命的定量准确性,这将扩展该技术的应用。重要的是,我们从单个 FLIM 图像重建了每个探针以及所有三个探针的叠加图像。我们的结果表明,FLIM 和相位向量分析可以作为一种强大的工具,用于同时以高灵敏度和准确性检测多种生物标志物。

相似文献

1
Phasor Analysis of Fluorescence Lifetime Enables Quantitative Multiplexed Molecular Imaging of Three Probes.
Anal Chem. 2022 Oct 18;94(41):14185-14194. doi: 10.1021/acs.analchem.2c02149. Epub 2022 Oct 3.
2
Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging.
Nat Methods. 2021 May;18(5):542-550. doi: 10.1038/s41592-021-01108-4. Epub 2021 Apr 15.
3
Fit-free analysis of fluorescence lifetime imaging data using the phasor approach.
Nat Protoc. 2018 Sep;13(9):1979-2004. doi: 10.1038/s41596-018-0026-5.
6
Particle-based phasor-FLIM-FRET resolves protein-protein interactions inside single viral particles.
Biophys Rep (N Y). 2023 Aug 9;3(3):100122. doi: 10.1016/j.bpr.2023.100122. eCollection 2023 Sep 13.
7
Multiplexed In Vivo Imaging with Fluorescence Lifetime-Modulating Tags.
Adv Sci (Weinh). 2024 Aug;11(32):e2404354. doi: 10.1002/advs.202404354. Epub 2024 Jun 20.
8
FLUTE: A Python GUI for interactive phasor analysis of FLIM data.
Biol Imaging. 2023 Nov 6;3:e21. doi: 10.1017/S2633903X23000211. eCollection 2023.
9
Live-cell biosensors based on the fluorescence lifetime of environment-sensing dyes.
Cell Rep Methods. 2024 Mar 25;4(3):100734. doi: 10.1016/j.crmeth.2024.100734. Epub 2024 Mar 18.
10
Light-field tomographic fluorescence lifetime imaging microscopy.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2402556121. doi: 10.1073/pnas.2402556121. Epub 2024 Sep 25.

引用本文的文献

2
Quantifying uncertainty in phasor-based time-domain fluorescence lifetime imaging microscopy.
Biomed Opt Express. 2025 Jul 8;16(8):3116-3127. doi: 10.1364/BOE.565990. eCollection 2025 Aug 1.
3
Denoising of Fluorescence Lifetime Imaging Data via Principal Component Analysis.
Res Sq. 2025 Jul 29:rs.3.rs-7143126. doi: 10.21203/rs.3.rs-7143126/v1.
4
Enhanced fluorescence lifetime imaging microscopy denoising via principal component analysis.
bioRxiv. 2025 Mar 2:2025.02.26.640419. doi: 10.1101/2025.02.26.640419.
6
Asparagusic Golgi Trackers.
JACS Au. 2024 Aug 20;4(10):3759-3765. doi: 10.1021/jacsau.4c00487. eCollection 2024 Oct 28.
8
Deep learning-based virtual H& E staining from label-free autofluorescence lifetime images.
Npj Imaging. 2024;2(1):17. doi: 10.1038/s44303-024-00021-7. Epub 2024 Jun 28.
10
Two-photon excitation fluorescence in ophthalmology: safety and improved imaging for functional diagnostics.
Front Med (Lausanne). 2024 Jan 3;10:1293640. doi: 10.3389/fmed.2023.1293640. eCollection 2023.

本文引用的文献

1
Linear Combination Properties of the Phasor Space in Fluorescence Imaging.
Sensors (Basel). 2022 Jan 27;22(3):999. doi: 10.3390/s22030999.
3
Phasor S-FLIM: a new paradigm for fast and robust spectral fluorescence lifetime imaging.
Nat Methods. 2021 May;18(5):542-550. doi: 10.1038/s41592-021-01108-4. Epub 2021 Apr 15.
4
Blind Resolution of Lifetime Components in Individual Pixels of Fluorescence Lifetime Images Using the Phasor Approach.
J Phys Chem B. 2020 Nov 12;124(45):10126-10137. doi: 10.1021/acs.jpcb.0c06946. Epub 2020 Nov 3.
5
Multiplexable fluorescence lifetime imaging (FLIM) probes for Abl and Src-family kinases.
Chem Commun (Camb). 2020 Nov 11;56(87):13409-13412. doi: 10.1039/d0cc05030j. Epub 2020 Oct 9.
7
Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front.
Cell. 2020 Sep 3;182(5):1341-1359.e19. doi: 10.1016/j.cell.2020.07.005. Epub 2020 Aug 6.
8
Classification of T-cell activation via autofluorescence lifetime imaging.
Nat Biomed Eng. 2021 Jan;5(1):77-88. doi: 10.1038/s41551-020-0592-z. Epub 2020 Jul 27.
9
Resolution of 4 components in the same pixel in FLIM images using the phasor approach.
Methods Appl Fluoresc. 2020 Apr 15;8(3):035001. doi: 10.1088/2050-6120/ab8570.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验