Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
FEMS Microbiol Rev. 2016 Nov 1;40(6):961-979. doi: 10.1093/femsre/fuw024.
Assemblages of microbial genotypes growing together can display surprisingly complex and unexpected dynamics and result in community-level functions and behaviors that are not readily expected from analyzing each genotype in isolation. This complexity has, at least in part, inspired a discipline of synthetic microbial ecology. Synthetic microbial ecology focuses on designing, building and analyzing the dynamic behavior of ‘ecological circuits’ (i.e. a set of interacting microbial genotypes) and understanding how community-level properties emerge as a consequence of those interactions. In this review, we discuss typical objectives of synthetic microbial ecology and the main advantages and rationales of using synthetic microbial assemblages. We then summarize recent findings of current synthetic microbial ecology investigations. In particular, we focus on the causes and consequences of the interplay between different microbial genotypes and illustrate how simple interactions can create complex dynamics and promote unexpected community-level properties. We finally propose that distinguishing between active and passive interactions and accounting for the pervasiveness of competition can improve existing frameworks for designing and predicting the dynamics of microbial assemblages.
聚集在一起生长的微生物基因型可以表现出惊人的复杂和意外的动态,并导致社区水平的功能和行为,而这些功能和行为从分析每个基因型的孤立状态是不容易预测到的。这种复杂性至少在一定程度上激发了合成微生物生态学这一学科的发展。合成微生物生态学专注于设计、构建和分析“生态回路”(即一组相互作用的微生物基因型)的动态行为,并理解社区水平的特性如何作为这些相互作用的结果而出现。在这篇综述中,我们讨论了合成微生物生态学的典型目标,以及使用合成微生物组合的主要优势和原理。然后,我们总结了当前合成微生物生态学研究的最新发现。特别是,我们关注不同微生物基因型之间相互作用的原因和后果,并说明简单的相互作用如何产生复杂的动态,并促进社区水平的特性。最后,我们提出区分主动和被动相互作用,并考虑竞争的普遍性,可以改进现有的设计和预测微生物组合动态的框架。