Suppr超能文献

一种受体介导的细胞与表面粘附的动力学模型。

A dynamical model for receptor-mediated cell adhesion to surfaces.

作者信息

Hammer D A, Lauffenburger D A

机构信息

Department of Chemical Engineering, University of Pennsylvania, Philadelphia 19104.

出版信息

Biophys J. 1987 Sep;52(3):475-87. doi: 10.1016/S0006-3495(87)83236-8.

Abstract

We present a dynamical model for receptor-mediated adhesion of cells in a shear field of viscous fluid to surfaces coated with ligand molecules complementary to receptors in the cell membrane. We refer to this model as the "point attachment model" because it considers the contact area between the cell and the surface to be a small, homogeneous region that mediates the initial attachment of the cell to the surface. Using a phase plane analysis of a system of nonlinear ordinary differential equations which govern the changes in free receptor density and bond density within the contact area with time, we can predict the conditions for which adhesion between the cell and the surface will take place. Whether adhesion occurs depends on values of dimensionless quantities that characterize the interaction of the cell and its receptors with the surface and its ligand, such as the bond formation rate, the receptor-ligand affinity, the fluid mechanical force, the receptor mobility, and the contact area. A key result is that there are two regimes in which different chemical and physical forces dominate: a rate-controlled high affinity regime and an affinity-controlled low-affinity regime. Many experimental observations can be explained by understanding which of these regimes is appropriate. We also provide simple approximate analytical solutions, relating adhesiveness to cell and surface properties as well as fluid forces, which allow convenient testing of model predictions by experiment.

摘要

我们提出了一个动力学模型,用于描述在粘性流体剪切场中,细胞通过受体介导与涂有与细胞膜受体互补的配体分子的表面发生粘附的过程。我们将此模型称为“点附着模型”,因为它将细胞与表面之间的接触区域视为一个小的、均匀的区域,该区域介导细胞与表面的初始附着。通过对一个非线性常微分方程组进行相平面分析,该方程组描述了接触区域内自由受体密度和键密度随时间的变化,我们可以预测细胞与表面发生粘附的条件。粘附是否发生取决于一些无量纲量的值,这些量表征了细胞及其受体与表面及其配体之间的相互作用,例如键形成速率、受体 - 配体亲和力、流体机械力、受体迁移率和接触面积。一个关键结果是存在两种不同的化学和物理力主导的状态:速率控制的高亲和力状态和亲和力控制的低亲和力状态。通过理解哪种状态适用,可以解释许多实验观察结果。我们还提供了简单的近似解析解,将粘附性与细胞和表面特性以及流体力联系起来,这使得通过实验方便地测试模型预测成为可能。

相似文献

1
A dynamical model for receptor-mediated cell adhesion to surfaces.
Biophys J. 1987 Sep;52(3):475-87. doi: 10.1016/S0006-3495(87)83236-8.
2
A dynamical model for receptor-mediated cell adhesion to surfaces in viscous shear flow.
Cell Biophys. 1989 Apr;14(2):139-73. doi: 10.1007/BF02797131.
3
Simulation of detachment of specifically bound particles from surfaces by shear flow.
Biophys J. 1997 Jul;73(1):517-31. doi: 10.1016/S0006-3495(97)78090-1.
4
Receptor-mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis.
Biophys J. 1990 Oct;58(4):841-56. doi: 10.1016/S0006-3495(90)82430-9.
5
A theoretical analysis for the effect of focal contact formation on cell-substrate attachment strength.
Biophys J. 1993 Mar;64(3):936-59. doi: 10.1016/S0006-3495(93)81456-5.
6
Adhesion energy of receptor-mediated interaction measured by elastic deformation.
Biophys J. 1999 Mar;76(3):1632-8. doi: 10.1016/S0006-3495(99)77322-4.
9
Mathematical model for the effects of adhesion and mechanics on cell migration speed.
Biophys J. 1991 Jul;60(1):15-37. doi: 10.1016/S0006-3495(91)82027-6.
10
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.

引用本文的文献

2
Mechanical forces amplify TCR mechanotransduction in T cell activation and function.
Appl Phys Rev. 2024 Mar;11(1):011304. doi: 10.1063/5.0166848.
3
Molecular mechanisms of catch bonds and their implications for platelet hemostasis.
Biophys Rev. 2023 Sep 26;15(5):1233-1256. doi: 10.1007/s12551-023-01144-8. eCollection 2023 Oct.
4
Adhesion molecules in multiple myeloma oncogenesis and targeted therapy.
Int J Hematol Oncol. 2022 Apr 26;11(2):IJH39. doi: 10.2217/ijh-2021-0017. eCollection 2022 Apr.
5
Dynamic self-reinforcement of gene expression determines acquisition of cellular mechanical memory.
Biophys J. 2021 Nov 16;120(22):5074-5089. doi: 10.1016/j.bpj.2021.10.006. Epub 2021 Oct 8.
6
Biophysical interactions between components of the tumor microenvironment promote metastasis.
Biophys Rev. 2021 Jun 4;13(3):339-357. doi: 10.1007/s12551-021-00811-y. eCollection 2021 Jun.
8
Past, Present, and Future of Affinity-based Cell Separation Technologies.
Acta Biomater. 2020 Aug;112:29-51. doi: 10.1016/j.actbio.2020.05.004. Epub 2020 May 19.
9
Sticking to the Problem: Engineering Adhesion in Molecular Endoscopic Imaging.
Cell Mol Bioeng. 2020 Jan 21;13(2):113-124. doi: 10.1007/s12195-020-00609-0. eCollection 2020 Apr.
10
Temperature-Induced Catch-Slip to Slip Bond Transit in Plasmodium falciparum-Infected Erythrocytes.
Biophys J. 2020 Jan 7;118(1):105-116. doi: 10.1016/j.bpj.2019.11.016. Epub 2019 Nov 22.

本文引用的文献

1
The stress-free shape of the red blood cell membrane.
Biophys J. 1981 Jun;34(3):409-22. doi: 10.1016/S0006-3495(81)84859-X.
3
Affinity chromatography of cells and cell membranes.
J Chromatogr. 1980 Nov 7;184(4):471-99. doi: 10.1016/s0021-9673(00)93875-5.
5
Chromatography of erythroblasts on immobilized transferrin.
Proc Soc Exp Biol Med. 1983 Jan;172(1):79-83. doi: 10.3181/00379727-172-41530.
7
Passive mechanical properties of human leukocytes.
Biophys J. 1981 Oct;36(1):243-56. doi: 10.1016/S0006-3495(81)84726-1.
8
Cancer metastasis. Organ colonization and the cell-surface properties of malignant cells.
Biochim Biophys Acta. 1982 Dec 21;695(2):113-76. doi: 10.1016/0304-419x(82)90020-8.
9
Cell adhesion. Competition between nonspecific repulsion and specific bonding.
Biophys J. 1984 Jun;45(6):1051-64. doi: 10.1016/S0006-3495(84)84252-6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验