Bell G I, Dembo M, Bongrand P
Biophys J. 1984 Jun;45(6):1051-64. doi: 10.1016/S0006-3495(84)84252-6.
We develop a thermodynamic calculus for the modeling of cell adhesion. By means of this approach, we are able to compute the end results of competition between the formation of specific macromolecular bridges and nonspecific repulsion arising from electrostatic forces and osmotic (steric stabilization) forces. Using this calculus also allows us to derive in a straightforward manner the effects of cell deformability, the Young's modulus for stretching of bridges, diffusional mobility of receptors, heterogeneity of receptors, variation in receptor number, and the strength of receptor-receptor binding. The major insight that results from our analysis concerns the existence and characteristics of two phase transitions corresponding, respectively, to the onset of stable cell adhesion and to the onset of maximum cell-cell or cell-substrate contact. We are also able to make detailed predictions of the equilibrium contact area, equilibrium number of bridges, and the cell-cell or cell-substrate separation distance. We illustrate how our approach can be used to improve the analysis of experimental data, by means of two concrete examples.
我们开发了一种用于细胞黏附建模的热力学演算方法。通过这种方法,我们能够计算特定大分子桥形成与静电力和渗透(空间稳定)力产生的非特异性排斥之间竞争的最终结果。使用这种演算方法还使我们能够直接推导细胞可变形性、桥拉伸的杨氏模量、受体的扩散迁移率、受体的异质性、受体数量的变化以及受体 - 受体结合强度的影响。我们分析得出的主要见解涉及分别对应稳定细胞黏附开始和最大细胞 - 细胞或细胞 - 底物接触开始的两个相变的存在和特征。我们还能够对平衡接触面积、桥的平衡数量以及细胞 - 细胞或细胞 - 底物分离距离进行详细预测。我们通过两个具体例子说明如何使用我们的方法来改进实验数据分析。