Suppr超能文献

用于评估癫痫患者手术靶点的脑电图时间序列预测模型。

Predictive modeling of EEG time series for evaluating surgery targets in epilepsy patients.

作者信息

Steimer Andreas, Müller Michael, Schindler Kaspar

机构信息

Department of Neurology, Inselspital\Bern University Hospital\University Bern, Bern, 3010, Switzerland.

出版信息

Hum Brain Mapp. 2017 May;38(5):2509-2531. doi: 10.1002/hbm.23537. Epub 2017 Feb 16.

Abstract

During the last 20 years, predictive modeling in epilepsy research has largely been concerned with the prediction of seizure events, whereas the inference of effective brain targets for resective surgery has received surprisingly little attention. In this exploratory pilot study, we describe a distributional clustering framework for the modeling of multivariate time series and use it to predict the effects of brain surgery in epilepsy patients. By analyzing the intracranial EEG, we demonstrate how patients who became seizure free after surgery are clearly distinguished from those who did not. More specifically, for 5 out of 7 patients who obtained seizure freedom (= Engel class I) our method predicts the specific collection of brain areas that got actually resected during surgery to yield a markedly lower posterior probability for the seizure related clusters, when compared to the resection of random or empty collections. Conversely, for 4 out of 5 Engel class III/IV patients who still suffer from postsurgical seizures, performance of the actually resected collection is not significantly better than performances displayed by random or empty collections. As the number of possible collections ranges into billions and more, this is a substantial contribution to a problem that today is still solved by visual EEG inspection. Apart from epilepsy research, our clustering methodology is also of general interest for the analysis of multivariate time series and as a generative model for temporally evolving functional networks in the neurosciences and beyond. Hum Brain Mapp 38:2509-2531, 2017. © 2017 Wiley Periodicals, Inc.

摘要

在过去20年里,癫痫研究中的预测建模主要关注癫痫发作事件的预测,而对于切除性手术有效脑靶点的推断却出奇地未受到重视。在这项探索性的初步研究中,我们描述了一种用于多变量时间序列建模的分布聚类框架,并将其用于预测癫痫患者脑部手术的效果。通过分析颅内脑电图,我们展示了术后无癫痫发作的患者与未无癫痫发作的患者是如何被清晰区分的。更具体地说,在7名实现癫痫发作自由(=恩格尔I级)的患者中,有5名患者,与随机切除或空切除相比,我们的方法预测出手术中实际切除的特定脑区集合会使癫痫相关聚类的后验概率显著降低。相反,在5名仍患有术后癫痫的恩格尔III/IV级患者中,有4名患者,实际切除集合的表现并不比随机或空切除集合的表现显著更好。由于可能的集合数量达到数十亿甚至更多,这对一个目前仍通过目视脑电图检查来解决的问题做出了重大贡献。除了癫痫研究,我们的聚类方法对于多变量时间序列分析以及作为神经科学及其他领域中随时间演变的功能网络的生成模型也具有普遍意义。《人类大脑图谱》38:2509 - 2531, 2017。© 2017威利期刊公司。

相似文献

1
Predictive modeling of EEG time series for evaluating surgery targets in epilepsy patients.
Hum Brain Mapp. 2017 May;38(5):2509-2531. doi: 10.1002/hbm.23537. Epub 2017 Feb 16.
2
Intracranial EEG in predicting surgical outcome in frontal lobe epilepsy.
Epilepsia. 2012 Oct;53(10):1739-45. doi: 10.1111/j.1528-1167.2012.03600.x. Epub 2012 Jul 19.
3
Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods.
J Neurosci Methods. 2018 Jul 15;305:54-66. doi: 10.1016/j.jneumeth.2018.04.021. Epub 2018 May 18.
4
Chow-Liu trees are sufficient predictive models for reproducing key features of functional networks of periictal EEG time-series.
Neuroimage. 2015 Sep;118:520-37. doi: 10.1016/j.neuroimage.2015.05.089. Epub 2015 Jun 9.
5
Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery.
Epilepsia. 2015 Jun;56(6):949-58. doi: 10.1111/epi.13002. Epub 2015 Apr 29.
7
Seizure outcomes after resective surgery for extra-temporal lobe epilepsy in pediatric patients.
J Neurosurg Pediatr. 2013 Aug;12(2):126-33. doi: 10.3171/2013.5.PEDS1336. Epub 2013 Jun 14.
10
Postoperative routine EEG correlates with long-term seizure outcome after epilepsy surgery.
Seizure. 2005 Oct;14(7):446-51. doi: 10.1016/j.seizure.2005.07.007. Epub 2005 Aug 31.

引用本文的文献

1
Geometric representations of brain networks can predict the surgery outcome in temporal lobe epilepsy.
NPJ Syst Biol Appl. 2025 Jul 16;11(1):79. doi: 10.1038/s41540-025-00562-6.
2
Interictal Functional Connectivity in Focal Refractory Epilepsies Investigated by Intracranial EEG.
Brain Connect. 2022 Dec;12(10):850-869. doi: 10.1089/brain.2021.0190. Epub 2022 Sep 14.
4
5
Quantification and Selection of Ictogenic Zones in Epilepsy Surgery.
Front Neurol. 2019 Oct 1;10:1045. doi: 10.3389/fneur.2019.01045. eCollection 2019.
6
Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods.
J Neurosci Methods. 2018 Jul 15;305:54-66. doi: 10.1016/j.jneumeth.2018.04.021. Epub 2018 May 18.

本文引用的文献

1
Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution.
Neuron. 2016 Sep 7;91(5):1170-1182. doi: 10.1016/j.neuron.2016.07.039. Epub 2016 Aug 25.
2
Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations.
PLoS Comput Biol. 2015 Dec 10;11(12):e1004642. doi: 10.1371/journal.pcbi.1004642. eCollection 2015 Dec.
3
High-frequency oscillations in epilepsy and surgical outcome. A meta-analysis.
Front Hum Neurosci. 2015 Oct 20;9:574. doi: 10.3389/fnhum.2015.00574. eCollection 2015.
4
Resected Brain Tissue, Seizure Onset Zone and Quantitative EEG Measures: Towards Prediction of Post-Surgical Seizure Control.
PLoS One. 2015 Oct 29;10(10):e0141023. doi: 10.1371/journal.pone.0141023. eCollection 2015.
5
Ictal onset on intracranial EEG: Do we know it when we see it? State of the evidence.
Epilepsia. 2015 Oct;56(10):1629-38. doi: 10.1111/epi.13120. Epub 2015 Aug 21.
6
Stereoelectroencephalography-guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases.
J Neurosurg. 2015 Dec;123(6):1358-67. doi: 10.3171/2014.12.JNS141968. Epub 2015 Jun 19.
7
Optimal control based seizure abatement using patient derived connectivity.
Front Neurosci. 2015 Jun 3;9:202. doi: 10.3389/fnins.2015.00202. eCollection 2015.
8
Chow-Liu trees are sufficient predictive models for reproducing key features of functional networks of periictal EEG time-series.
Neuroimage. 2015 Sep;118:520-37. doi: 10.1016/j.neuroimage.2015.05.089. Epub 2015 Jun 9.
9
The connectomics of brain disorders.
Nat Rev Neurosci. 2015 Mar;16(3):159-72. doi: 10.1038/nrn3901.
10
An in silico approach for pre-surgical evaluation of an epileptic cortex.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4884-7. doi: 10.1109/EMBC.2014.6944718.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验