文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过对个体结构脑网络进行虚拟切除来优化癫痫手术。

Optimization of epilepsy surgery through virtual resections on individual structural brain networks.

机构信息

Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.

Department of Anatomy and Neuroscience, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.

出版信息

Sci Rep. 2021 Sep 24;11(1):19025. doi: 10.1038/s41598-021-98046-0.


DOI:10.1038/s41598-021-98046-0
PMID:34561483
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8463605/
Abstract

The success of epilepsy surgery in patients with refractory epilepsy depends upon correct identification of the epileptogenic zone (EZ) and an optimal choice of the resection area. In this study we developed individualized computational models based upon structural brain networks to explore the impact of different virtual resections on the propagation of seizures. The propagation of seizures was modelled as an epidemic process [susceptible-infected-recovered (SIR) model] on individual structural networks derived from presurgical diffusion tensor imaging in 19 patients. The candidate connections for the virtual resection were all connections from the clinically hypothesized EZ, from which the seizures were modelled to start, to other brain areas. As a computationally feasible surrogate for the SIR model, we also removed the connections that maximally reduced the eigenvector centrality (EC) (large values indicate network hubs) of the hypothesized EZ, with a large reduction meaning a large effect. The optimal combination of connections to be removed for a maximal effect were found using simulated annealing. For comparison, the same number of connections were removed randomly, or based on measures that quantify the importance of a node or connection within the network. We found that 90% of the effect (defined as reduction of EC of the hypothesized EZ) could already be obtained by removing substantially less than 90% of the connections. Thus, a smaller, optimized, virtual resection achieved almost the same effect as the actual surgery yet at a considerably smaller cost, sparing on average 27.49% (standard deviation: 4.65%) of the connections. Furthermore, the maximally effective connections linked the hypothesized EZ to hubs. Finally, the optimized resection was equally or more effective than removal based on structural network characteristics both regarding reducing the EC of the hypothesized EZ and seizure spreading. The approach of using reduced EC as a surrogate for simulating seizure propagation can suggest more restrictive resection strategies, whilst obtaining an almost optimal effect on reducing seizure propagation, by taking into account the unique topology of individual structural brain networks of patients.

摘要

癫痫手术在耐药性癫痫患者中的成功取决于正确识别致痫区(EZ)和最佳选择切除区域。在这项研究中,我们基于结构脑网络开发了个体化计算模型,以探索不同虚拟切除对癫痫发作传播的影响。在 19 名患者的术前弥散张量成像中,我们将癫痫发作建模为个体结构网络上的传染病过程[易感-感染-恢复(SIR)模型]。虚拟切除的候选连接是从临床假设的 EZ 开始的所有连接,癫痫发作就是从这里开始的,到其他大脑区域。作为 SIR 模型的计算可行替代方案,我们还删除了最大程度降低假设的 EZ 的特征向量中心度(EC)(较大的值表示网络枢纽)的连接,较大的降低意味着较大的影响。通过模拟退火找到最大效果的最佳连接组合。作为比较,相同数量的连接被随机删除,或者基于量化网络中节点或连接重要性的度量。我们发现,通过删除不到 90%的连接,就可以获得 90%的效果(定义为假设的 EZ 的 EC 降低)。因此,较小的、优化的虚拟切除可以达到与实际手术几乎相同的效果,但成本要低得多,平均节省 27.49%(标准偏差:4.65%)的连接。此外,最大有效的连接将假设的 EZ 与枢纽连接起来。最后,优化的切除与基于结构网络特征的切除一样有效,无论是在降低假设的 EZ 的 EC 还是在抑制癫痫发作传播方面。使用降低的 EC 作为模拟癫痫发作传播的替代方法的方法可以建议更严格的切除策略,同时通过考虑患者个体结构脑网络的独特拓扑结构,获得几乎最佳的降低癫痫发作传播的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/6fe76d17579f/41598_2021_98046_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/953e0994424d/41598_2021_98046_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/945223e1aec3/41598_2021_98046_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/1415b1cf32c1/41598_2021_98046_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/0acec8c43172/41598_2021_98046_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/add7b288c504/41598_2021_98046_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/7de28454061c/41598_2021_98046_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/6fe76d17579f/41598_2021_98046_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/953e0994424d/41598_2021_98046_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/945223e1aec3/41598_2021_98046_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/1415b1cf32c1/41598_2021_98046_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/0acec8c43172/41598_2021_98046_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/add7b288c504/41598_2021_98046_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/7de28454061c/41598_2021_98046_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf34/8463605/6fe76d17579f/41598_2021_98046_Fig7_HTML.jpg

相似文献

[1]
Optimization of epilepsy surgery through virtual resections on individual structural brain networks.

Sci Rep. 2021-9-24

[2]
Epidemic models characterize seizure propagation and the effects of epilepsy surgery in individualized brain networks based on MEG and invasive EEG recordings.

Sci Rep. 2022-3-8

[3]
Multitier Network Analysis Using Resting-state Functional MRI for Epilepsy Surgery.

Neurol Med Chir (Tokyo). 2022-1-15

[4]
Transient seizure onset network for localization of epileptogenic zone: effective connectivity and graph theory-based analyses of ECoG data in temporal lobe epilepsy.

J Neurol. 2019-1-25

[5]
Seizure outcome of epilepsy surgery in focal epilepsies associated with temporomesial glioneuronal tumors: lesionectomy compared with tailored resection.

J Neurosurg. 2009-12

[6]
An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control.

Front Comput Neurosci. 2024-2-26

[7]
Magnetic source imaging and ictal SPECT in MRI-negative neocortical epilepsies: additional value and comparison with intracranial EEG.

Epilepsia. 2012-10-25

[8]
Positron emission tomography in presurgical localization of epileptic foci.

Ideggyogy Sz. 2003-7-20

[9]
Controlling seizure propagation in large-scale brain networks.

PLoS Comput Biol. 2019-2-25

[10]
Correlating Resting-State Functional Magnetic Resonance Imaging Connectivity by Independent Component Analysis-Based Epileptogenic Zones with Intracranial Electroencephalogram Localized Seizure Onset Zones and Surgical Outcomes in Prospective Pediatric Intractable Epilepsy Study.

Brain Connect. 2017-9

引用本文的文献

[1]
Localization of the epileptogenic network from scalp EEG using a patient-specific whole-brain model.

Netw Neurosci. 2025-3-3

[2]
Functional connectotomy of a whole-brain model reveals tumor-induced alterations to neuronal dynamics in glioma patients.

Netw Neurosci. 2025-3-20

[3]
Individualized epidemic spreading models predict epilepsy surgery outcomes: A pseudo-prospective study.

Netw Neurosci. 2024-7-1

[4]
Hub overload and failure as a final common pathway in neurological brain network disorders.

Netw Neurosci. 2024-4-1

[5]
An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control.

Front Comput Neurosci. 2024-2-26

[6]
The role of quantitative markers in surgical prognostication after stereoelectroencephalography.

Ann Clin Transl Neurol. 2023-11

[7]
The role of epidemic spreading in seizure dynamics and epilepsy surgery.

Netw Neurosci. 2023-6-30

[8]
Tau protein spreads through functionally connected neurons in Alzheimer's disease: a combined MEG/PET study.

Brain. 2023-10-3

[9]
An individual data-driven virtual resection model based on epileptic network dynamics in children with intractable epilepsy: a magnetoencephalography interictal activity application.

Brain Commun. 2023-5-25

[10]
[Localization of epileptogenic zone based on reconstruction of dynamical epileptic network and virtual resection].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022-12-25

本文引用的文献

[1]
Data-driven method to infer the seizure propagation patterns in an epileptic brain from intracranial electroencephalography.

PLoS Comput Biol. 2021-2

[2]
Quantification and Selection of Ictogenic Zones in Epilepsy Surgery.

Front Neurol. 2019-10-1

[3]
Virtual resection predicts surgical outcome for drug-resistant epilepsy.

Brain. 2019-12-1

[4]
Changing concepts in presurgical assessment for epilepsy surgery.

Nat Rev Neurol. 2019-10

[5]
Optimization of surgical intervention outside the epileptogenic zone in the Virtual Epileptic Patient (VEP).

PLoS Comput Biol. 2019-6-26

[6]
A Model-Based Assessment of the Seizure Onset Zone Predictive Power to Inform the Epileptogenic Zone.

Front Comput Neurosci. 2019-4-26

[7]
Characterizing the role of the structural connectome in seizure dynamics.

Brain. 2019-7-1

[8]
The role that choice of model plays in predictions for epilepsy surgery.

Sci Rep. 2019-5-14

[9]
Brain synchronizability, a false friend.

Neuroimage. 2019-4-12

[10]
Neuroimaging and connectomics of drug-resistant epilepsy at multiple scales: From focal lesions to macroscale networks.

Epilepsia. 2019-3-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索