Suppr超能文献

评估癫痫患者的切除术靶点:定量脑电图方法的比较。

Evaluating resective surgery targets in epilepsy patients: A comparison of quantitative EEG methods.

机构信息

Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland; Support Center for Advanced Neuroimaging (SCAN), University Institute for Diagnostic and Interventional Neuroradiology, Inselspital, Bern, Switzerland.

Department of Neurology, Inselspital, Bern University Hospital, University Bern, Bern, Switzerland.

出版信息

J Neurosci Methods. 2018 Jul 15;305:54-66. doi: 10.1016/j.jneumeth.2018.04.021. Epub 2018 May 18.

Abstract

BACKGROUND

Quantitative analysis of intracranial EEG is a promising tool to assist clinicians in the planning of resective brain surgery in patients suffering from pharmacoresistant epilepsies. Quantifying the accuracy of such tools, however, is nontrivial as a ground truth to verify predictions about hypothetical resections is missing.

NEW METHOD

As one possibility to address this, we use customized hypotheses tests to examine the agreement of the methods on a common set of patients. One method uses machine learning techniques to enable the predictive modeling of EEG time series. The other estimates nonlinear interrelation between EEG channels. Both methods were independently shown to distinguish patients with excellent post-surgical outcome (Engel class I) from those without improvement (Engel class IV) when assessing the electrodes associated with the tissue that was actually resected during brain surgery. Using the AND and OR conjunction of both methods we evaluate the performance gain that can be expected when combining them.

RESULTS

Both methods' assessments correlate strongly positively with the similarity between a hypothetical resection and the corresponding actual resection in class I patients. Moreover, the Spearman rank correlation between the methods' patient rankings is significantly positive.

COMPARISON WITH EXISTING METHOD(S): To our best knowledge, this is the first study comparing surgery target assessments from fundamentally differing techniques.

CONCLUSIONS

Although conceptually completely independent, there is a relation between the predictions obtained from both methods. Their broad consensus supports their application in clinical practice to provide physicians additional information in the process of presurgical evaluation.

摘要

背景

定量分析颅内脑电图是一种很有前途的工具,可以帮助临床医生规划患有耐药性癫痫的患者的切除性脑手术。然而,要量化此类工具的准确性并非易事,因为缺少用于验证对假设性切除的预测的真实数据。

新方法

作为解决此问题的一种可能性,我们使用定制的假设检验来检查方法在共同患者集上的一致性。一种方法使用机器学习技术来实现 EEG 时间序列的预测建模。另一种方法则估计 EEG 通道之间的非线性相互关系。当评估与实际在脑外科手术中切除的组织相关联的电极时,这两种方法都已被证明能够区分手术预后良好(Engel 分级 I)的患者和没有改善的患者(Engel 分级 IV)。使用这两种方法的 AND 和 OR 结合,我们评估了将它们结合起来可以预期的性能增益。

结果

两种方法的评估与 I 级患者中假设性切除与相应实际切除之间的相似性呈强烈正相关。此外,方法对患者排名的 Spearman 秩相关系数显著为正。

与现有方法的比较

据我们所知,这是首次比较从根本上不同技术获得的手术目标评估的研究。

结论

尽管在概念上完全独立,但两种方法的预测之间存在关系。它们的广泛共识支持它们在临床实践中的应用,为医生在术前评估过程中提供额外的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fad/6172189/8b6d591e7652/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验